



# Inria / Alcatel Lucent Bell Labs Common Lab *sharing a vision of research*



O. Audouin & Albert Benveniste



| from ATM<br>to IP                                | GPRS<br>Optical networks<br>QoS for IP     | Self-organizing<br>Autonomic             | Cloud<br>Green<br>Autonomic              |
|--------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|
| 1997                                             | 2005                                       | 2008                                     | 2012                                     |
|                                                  |                                            |                                          |                                          |
| First<br>Framework<br>Agreement<br>Alcatel-Inria | Alcatel<br>External<br>Research<br>Program | ALU-BL<br>Inria<br>Common Lab<br>Phase 1 | ALU-BL<br>Inria<br>Common Lab<br>Phase 2 |
| A. Benveniste<br>G. Giraudon                     | A. Benveniste<br>A. Carenco                | A. Benveniste<br>O. Audouin              | A. Benveniste<br>O. Audouin              |



2 | Labo commun | "evaluation" | March 2012

### A light weight structure (Phase 1: 2008-2011)









#### Cost of operating the structure $\approx$ 10 days / year for each Director







Publications: 95 (among which  $\approx$ 35% are joint)

Patents: 13

Seed technologies (industrialization in progress or for consideration):

- Autonomic Channel Power Tuning in an Optical Network; distributed constrained convex optimization
- Self-configuration and self-tuning of wireless cellular networks; Voronoi based models, coverage processes, random spatial trees, Gibbs random fields
- Flow aware routing based on DPI and statistical analyses

Projects born: IP-Univerself (HiMa), ANR-ARSSO and ECOSCELLS (SelfNets)

People:

- Calvin Chen TREC → BL Villarceaux + LINCS
- Amira Alloum  $\rightarrow$  software architect in wireless BD



## Two sample results: Autonomic Wavelength Power Tuning in a Photonic Network



Challenges:

- optimize optical reach without regeneration
- optimize & equalize quality of all connections
- avoid manual tuning, and over-dimensioning
- better use of available resources

Distributed and adaptive solution:

- huge non-linear constrained optimization problem
- distributed P2P tuning (at node scale), derived from Markov fields inference techniques
- dynamic optimal power (re)allocation when connections join/leave

Results:

- ALU simulations:
  50% reduction in regeneration equipment
- 2 joint ALU-Inria patents







#### Two sample results: Autonomic cellular networks



Stochastic approach from statistical physics

 (Gibbs sampler) to explore the discrete tridimensional space {power;user-association;channel-allocation} and converge to an optimal configuration.

Distributed adaptive algorithm  $\Rightarrow$  *flexibility* 

Adaptive optimization  $\Rightarrow$  *bandwidth efficiency* 

Bounded domain of exploration  $\Rightarrow$  stability

Tunable for a variety of contexts

3 Patents, 3 joint publications



$$\mathcal{E}_{u} = \underbrace{\frac{N_{u} + \sum\limits_{v \neq u} P_{v}(c_{u})l(b_{v}, u, c_{u})}{P_{u}(c_{u})l(b_{u}, u, c_{u})}}_{=1/(\text{SINR}_{u})} + \sum\limits_{v \neq u} \frac{P_{u}(c_{v})l(b_{u}, v, c_{v})}{P_{v}(c_{v})l(b_{v}, v, c_{v})}$$





8 | Labo commun | "evaluation" | March 2012

Alcatel · Lucent





### Concluding remarks

#### Benefits for ALU Benefits for Inria

| Giving breathing to research thanks<br>to longer time scales | Better understanding strategic industrial issues  |
|--------------------------------------------------------------|---------------------------------------------------|
| Accessing some breakthrough<br>technologies & mastering      | Discovering new problems for research             |
| Jointly developing technologies with<br>externals skills     | Jointly developing research with externals skills |
| Structuring effect                                           | Structuring effect                                |
| Brain drain                                                  |                                                   |

At a low cost









| • | ۰ | ۲ | • | • | • | •         | ۲ | ۲ | ٠ | •                        | ۲ | • | • | • | ۲ |   | ۲ | • | ٠                        | ۲ | • | • | • | • | • | ۰                        | ۲ | • | ٠ | • | • |
|---|---|---|---|---|---|-----------|---|---|---|--------------------------|---|---|---|---|---|---|---|---|--------------------------|---|---|---|---|---|---|--------------------------|---|---|---|---|---|
| • |   | • | • | • |   | $\bullet$ | • | • | • | ${\color{black}\bullet}$ | • | • | • |   | • | • | • |   | ${\color{black}\bullet}$ | • | • |   |   | • | • | ${\color{black}\bullet}$ |   | • | • |   |   |
| • |   |   |   |   |   |           |   |   | • |                          |   |   | • |   |   |   |   | • |                          |   |   |   |   |   |   |                          |   |   |   |   | • |