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Robustness properties and
confidence interval reliability
issues
Peter W. Glynn, Gerardo Rubino and Bruno Tuffin

4.1 Introduction

In this chapter, we discuss the robustness and reliability of the estimators of
the probability of a rare event (or, more generally, of the expectation of some
function of rare events) with respect to rarity: is the estimator accurate as rarity
increases? (recall that accuracy, when estimating small probabilities, focuses on
relative rather than absolute errors). And what about the reliability (i.e., the
coverage) of the associated confidence interval?

If we parameterize the model with a (small) real ε such that the probability
of the rare event considered decreases to zero as ε → 0, we need to control the
quality of the estimator as rarity increases, with respect to accuracy and coverage.
An estimator will be said to be robust (in different senses defined hereafter) if its
quality (i.e., the gap with respect to the true value) is not significantly affected
when ε → 0. Similarly, an estimator is always accompanied with a confidence
interval. A reliable estimator is then an estimator for which the confidence inter-
val coverage does not deteriorate as ε → 0. Those two notions are different: one
focuses on the error itself, the other on quality of the error estimation.
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To better illustrate this, let us start with the standard or crude estimator
of the probability of a rare event. Let ε be this probability and (Xi)1≤i≤n be
independently and identically distributed random variables such that Xi = 1 if
the rare event occurs at the ith trial and 0 otherwise. The standard estimator of
ε is γ̂ STD

n = n−1 ∑n
i=1 Xi . The sum

∑n
i=1 Xi is a binomial random variable with

variance nε(1 − ε), and the resulting confidence interval for ε, centered at γ̂ STD
n ,

at confidence level 1 − α, is[
γ̂ STD

n − z1−α/2

√
ε(1 − ε)√

n
, γ̂ STD

n + z1−α/2

√
ε(1 − ε)√

n

]

where z1−α/2 = �−1(1 − α/2) and � is the standard normal cumulative distribu-
tion function. The relative half-width RE of the confidence interval is therefore
z1−α/2

√
1 − ε/

√
nε. For a fixed sample size n, this means that, as ε → 0, the

relative error of the estimation goes to infinity. Therefore, the accuracy of the
estimator deteriorates as ε → 0. The absolute error given by the confidence inter-
val half-width zα/2

√
ε(1 − ε)/

√
n tends to 0 with ε, but at the much smaller rate√

ε than ε, so it does not give a good idea of the order of magnitude of the
probability of interest. In other words, in order to get a fixed relative half-width
RE = δ of the confidence interval as ε → 0, one would have to increase the
sample size (which usually means the simulation computating time) as

n = (z1−α/2)
2 1 − ε

δ2ε
,

that is, in inverse proportion to ε. The aim of rare event simulation is to con-
struct estimators for which the relative error is kept under control as the event
probability decreases to zero. Such estimators are said to be robust , and families
of robusness properties will be discussed in this chapter.

But looking only at the (theoretical) relative error, or some of its closely
related notions introduced below, may be hazardous, or may only provide partial
views of the possible problems. When evaluating γ using some unbiased estima-
tor γ̂n = n−1 ∑n

i=1 Xi , where the Xi are independently and identically (generally)
distributed random variables with mean μ and variance σ 2, not only is E(γ̂n) = γ

unknown in practice, but so is its variance Var(γ̂n) = σ 2
n = σ 2/n. Generally σ 2

is estimated by the unbiased σ̂ 2
n :

σ 2 ≈ σ̂ 2
n = 1

n − 1

n∑
i=1

(Xi − γ̂n)
2.

This estimator is at least as sensitive to rarity as γ̂n itself.
Returning to the crude estimation of a probability ε by the average of

Bernoulli random variables γ̂ STD
n , if n is much smaller than 1/ε, the rare event

will most likely not be observed (on average, an occurrence appears after 1/ε

replications), leading to a confidence interval (0, 0) because γ̂n = σ̂ 2
n = 0. With

the (very unlikely) assumption that we end up with exactly one occurrence
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of the rare event, γ̂n = 1/n overestimates the event, and the variance is also
overestimated by σ̂ 2

n = 1/n. We then get a large confidence interval, with a
very high coverage in this (very unlikely) case. This highlights not only the
problem of robustness of the estimator, but also the problem of the reliability ,
meaning the error in terms of coverage, of the confidence interval produced.
As stated before, the two notions are different: robustness is about the actual
error with respect to the true value, while reliability is about the coverage of the
confidence interval, both as the probability of the rare event goes to zero.

Note that for binomial random variables, such as the one we were looking
at, we know how to generate a more reliable confidence interval even for small
probabilities ε. For instance, the Wilson score interval gives an interval⎛

⎜⎝ γ̂ STD
n + 1

2n
z2

1−α/2 ± z1−α/2

√
γ̂ STD
n (1−γ̂ STD

n )

n
+ z2

1−α/2

4n2

1 + 1
n
z2

1−α/2

⎞
⎟⎠

(but note that there exist other interval constructions; see [11] for a description
and some comparisons). This interval is known to yield a better reliability, but is
very conservative for fixed n as ε decreases. The relative half-width of the con-
fidence interval, on the other hand, is still growing to infinity as ε tends to zero.

This chapter investigates the robustness properties and reliability issues in
rare event simulation. Section 4.2 quickly reviews the known robustness prop-
erties in the literature, including bounded relative error (also called bounded
relative variance), and logarithmic efficiency (also called asymptotic optimality).
Section 4.3 discusses the efficiency of an estimator when computation time is
taken into account. Section 4.4 discusses the related notion of reliability of the
corresponding confidence interval. We start by illustrating in Section 4.4.1 that
bad rare event estimations are not always checked by looking at intervals of the
form (0, 0), but can be much more difficult to detect. We then present two relia-
bility measures. Section 4.5 summarizes the chapter by setting out some practical
rules for detecting the presence of problems associated with the reliability of the
observed confidence interval. Section 4.6 concludes the chapter.

4.2 Classical asymptotic robustness properties

This section describes the basic asymptotic robustness properties that can be
found in the literature. For a recent survey, the reader is advised to look at [7],
where more definitions are covered and discussed in detail.

As noted before, if we want to investigate the robustness properties of esti-
mators with respect to rarity, it is very useful to parameterize the model. Let
γ = γ (ε) be the expectation (or probability if we restrict ourselves to integrating
indicator functions) we are trying to estimate, parameterized by ε and such that
γ (ε) → 0 as ε → 0. In this way the event can be arbitrarily small by playing
with the value of ε, which allows the behavior of the estimator to be captured
as rarity increases.



66 ROBUSTNESS AND CONFIDENCE INTERVAL RELIABILITY

Consider an unbiased estimator γ̂n of γ , built from a sample having size
n. The bounded relative error (BRE) is defined in [14]. It basically states that
the relative half-width confidence interval already studied above is bounded uni-
formly in ε, for a fixed sample size n. This asserts that the relative error is not
sensitive to the rarity of the event and is then the typical desirable property.

Definition 1. Let σ 2
n denote the variance of the estimator γ̂n, σn = √

σ 2
n and

let zδ denote the 1 − δ/2 quantile of the standard normal distribution (zδ =
�−1(1 − δ/2) where � is the standard normal cumulative distribution). Recall
that the relative error RE associated with γ̂n is defined by the half-width confi-
dence interval

RE = zδ

σn

γ
. (4.1)

We say that we have a bounded relative error if RE remains bounded as ε → 0
(i.e., uniformly in ε).

This property has been extensively studied and is often seen as the key prop-
erty to verify [6, 8].

The aforementioned crude estimator is a typical illustration of one not veri-
fying BRE. Additionally, increasing the occurrence of the rare event might not
be sufficient. On the other hand, some estimators do possess the BRE property.
Those two assertions are verified by the next two examples.

Consider the following example taken from [16], which can be seen as a
simple case of the Markovian dependability models described in Chapter 6.

Example 1. A system consists of two types of components with two components
of each type. Failure rates are o(ε) for some parameter ε, and the transition
probabilities of the embedded discrete-time Markov chain are as described in
Figure 4.1, where (i, j) denotes the state with i (j ) operational components of
type 1 (2). The states where the system is down are shaded gray. We see that the
system is functioning as soon as there is at least one component of each class
that is operational.

Associated with each transition we put the first term of the development of
the corresponding probability in powers of ε. We want to estimate the probability
γ that, starting from (2, 2), we reach a down state before returning to (2, 2).

Given the target γ , we can simplify the model by collapsing or aggregating
the failed states into a single one which we make absorbing. The resulting chain
is shown in Figure 4.2.

Since γ � 1 because ε � 1 (we will see that γ ≈ 2ε2), we use the impor-
tance sampling (IS) method, and specifically the failure biasing scheme (see
Section 6.3.2), with transition probabilities described in Figure 4.3. Basically,
for each functioning state different from the initial (2, 2), we increase the prob-
ability of failure to the constant q and use individual probabilities proportional
to the original ones. The parameter q is chosen between 1/2 and 1, for instance,
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Figure 4.1 The evolution of a four-component system with two classes of compo-
nents, subject to failures and repairs. The scheme shows the canonically embedded
discrete-time Markov chain, where we give the simplest equivalents of the transi-
tion probabilities as ε → 0.
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Figure 4.2 The result of aggregating the failed states in previous chain into a
single absorbing one.
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Figure 4.3 The result of changing the measure according to the failure biasing
scheme with parameter q, again indicating the equivalents of the transition prob-
abilities.

q = 0.8. The idea is, more generally, to enforce the transition probability asso-
ciated with a failure to some �(1) value, instead of o(1).

As seen in Chapter 1, the probability γ is given by

γ =
∑

π∈PF

p(π),

where PF is the set of all paths starting at (2,2), ending at a down state, and not
visiting either (2,2) or a failed state in between, and p(π) is the probability of
path π under the original measure.

In this simple chain, there are six elementary paths in PF (an elementary path
is a path not visiting the same state more than once): π1 = ((2, 2), (2, 1), (0));
π2 = ((2, 2), (2, 1), (1, 1), (0)); π3 = ((2, 2), (2, 1), (1, 1), (1, 2), (0))′ π4 =
((2, 2), (1, 2), (0)); π5 = ((2, 2), (1, 2), (1, 1), (0)); π6 = ((2, 2), (1, 2), (1, 1),

(2, 1), (0)). Their corresponding probabilities are p(π1) ≈ ε2, p(π2) ≈ ε2,
p(π3) ≈ ε3/2, p(π4) ≈ ε3, p(π5) ≈ ε4, p(π6) ≈ ε5/2.

Observe that any other path include cycles that always strictly increase the
order of the path probability in ε. This means that there are only a finite number
of paths having the same order k in ε for any k, and thus, that γ = 2ε2 + o(ε2)

because of the two dominant paths π1 and π2 [14].
Let us now consider the IS scheme. To explore its performance, we must

evaluate the variance of the IS estimator γ̂ IS
n . For this purpose, denoting by 


a generic random path and by p̃(π) the probability of path π under the new
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measure, we write

Var(γ̂ IS
n ) = 1

n

{
Ẽ[L2(
)1(
 ∈ PF )] − γ 2} = 1

n

⎡
⎣ ∑

π∈PF

p2(π)

p̃(π)
− γ 2

⎤
⎦ ,

where Ẽ denotes the expectation with respect to the IS measure. Looking at the
probability of the six paths under the IS measure, the dominant term in this sum
comes from π1; it is in ε3, and we get

Var(γ̂ IS
n ) = ε3

nq
+ o(ε3).

The relative error of the IS estimator is RE = 1.96
√

Var(γ̂ IS
n )/(γ̂ IS

n

√
n). We see

that RE is proportional to 1/
√

ε and thus goes to infinity as ε → 0.

Example 2. Consider a system failing according to an exponential distribution
with rate λ. We wish to compute the probability γ that the system fails before
ε. For such a trivial problem, we know that γ = 1 − e−λε. Assume that we want
to estimate this number using IS, and that we still sample from an exponential
density, but with a different rate λ̃. Our IS estimator is the random variable
X = 1[0,T ]L with L the likelihood ratio. The second moment of this estimator is

Ẽ[X2] =
∫ ε

0

(
λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy = λ2

λ̃(2λ − λ̃)
(1 − e−(2λ−λ̃)ε).

The relative error zδσ/γ is bounded if and only if Ẽ[X2]/γ 2 is bounded as
ε → 0. It can easily be seen that, if λ̃ = 1/ε,

Ẽ[X2]

γ 2
= λ2(1 − e−(2λ−λ̃)ε)

λ̃(2λ − λ̃)(1 − e−λε)2
−→ e − 1 as ε → 0.

So, RE remains bounded as ε → 0.

BRE has often been found difficult to verify in practice. For this reason,
people often use logarithmic efficiency, also called asymptotic optimality.

Definition 2. An unbiased estimator γ̂n of γ is said to be logarithmic efficient
with respect to rarity parameter ε if

lim
ε→0

ln E[γ̂ 2
n ]

ln γ
= 2.

Note that the quantity under limit is always positive and less than or equal
to 2. This is because Var(γ̂n) ≥ 0, so E[γ̂ 2

n ] ≥ γ 2 and then ln E[γ̂ 2
n ] ≥ 2 ln γ .
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Basically, this property means that the second moment and the square of the
mean go to zero at the same exponential rate. Asymptotic optimality has been
widely used in queuing applications, for the IS class of simulation methods (see
Chapter 5).

It can be proved that asymptotic optimality is a necessary but not sufficient
condition for BRE. Indeed, if the relative error corresponding to estimator γ̂n

of γ is bounded, then there is some κ > 0 such that E[γ̂ 2] ≤ κ2γ 2, that is,
ln E[γ̂ 2

n ] ≤ ln κ2 + 2 ln γ, leading to limε→0 ln E[γ̂ 2
n ]/ ln γ ≥ 2. Since this ratio

is always less than 2, we get the limit 2.
On the other hand, there are plenty of examples for which logarithmic effi-

ciency is verified and not BRE, just by having the same exponential decreasing
rate for the second moment and square expectation, but with an additional
(polynomial) multiplicative component for the second moment, vanishing for
logarithmic efficiency, but not for relative error. Other more practical examples,
from queuing analysis and large-deviations theory, can be found in [12]. A sim-
pler basic example is provided in [7], just by looking at an estimator for which
γ = e−η/ε with η > 0, but for which the variance is Q(1/ε)e−2η/ε with Q a
polynomial.

Extensions of logarithmic efficiency and BRE were introduced in [7] to higher
moments than just the second, to make sure that they are well estimated too. For
example, this also allows the variance of the empirical variance to be controlled.
A preliminary work on this was [17], where BRE for the empirical variance was
studied. In Section 4.4, we further investigate the asymptotic coverage of the
confidence interval as ε → 0.

4.3 Efficiency (or work-normalized variance) analysis

Throughout the above analysis, we have been looking at estimators for which the
(relative) variance is as small as possible for a fixed sample size. On the other
hand, this improved precision might be attained at the cost of employing a more
complex algorithm, which can lead to increased computation time. This variation
might also depend on the rarity parameter ε. Similarly, some methods can have
an average computation cost decreasing with ε. This trade-off between accuracy
and computational complexity has therefore to be taken into account with when
analyzing rare event simulators.

The principle is then to combine variance and computation time. In [5], the
efficiency is defined as being inversely proportional to the product of the sampling
variance and the amount of labor required to obtain this estimate. Formally:

Definition 3. The efficiency of an estimator γ̂n based on a sample of size n, with
variance σ 2

n and obtained, on average, in a computation time tn, is 1/(σ 2
n tn).

If the estimate is obtained from n independent replications each of variance
σ 2 and with sampling average time t , then σ 2

n = σ 2/n and tn/n → t as n → ∞.
Thus, if n � 1, the efficiency of γ̂ is approximately 1/(σ 2t). This means that σ 2

n tn
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can be also seen as a work-normalized variance. It also allows two estimators to be
compared for a given computation budget c: if t and t ′ are the mean times required
to generate one independent replication of X and X′ when computing γ̂n and γ̂ ′

n′ ,
the number of replications will be respectively n = c/t and n′ = c/t ′. Thus the
best estimator is γ̂n if σ 2(X)t < σ 2(X′)t ′, that is, if its efficiency is larger.

This definition is generalized in [4] by looking more precisely at the variance
obtained with a budget c, taking into account the random generation time.

Based on this principle, the so-called bounded relative efficiency has been
defined in [2]:

Definition 4. Let γ̂n be an estimator of γ built using n replications and σ 2
n its

variance. Let tn be the average simulation time to get those n replications. The
relative efficiency of γ̂n is given by

REff = γ 2

σ 2
n tn

.

We will say that γ̂n has bounded relative efficiency with respect to rarity parameter
ε, if there exists a constant d > 0 such that REff is minored by d for all ε.

This basically means that the normalized relative variance σ 2
n tn/γ

2 is
upper-bounded whatever the rarity, and is therefore a work-normalized version
of the bounded relative error property.

In [2], an illustration of the need for such a definition is provided for the
reliability analysis of a network (see Chapter 7 below), where the relative error
is unbounded but the method is still efficient as ε → 0, just due to the fact that
the average computation time per run decreases to 0 at a proper rate. Sufficient
conditions for this are also provided.

Similarly, the work-normalized logarithmic efficiency was defined in [3] to
deal with the efficiency of splitting estimators.

Definition 5. The unbiased estimator γ̂n of γ has work-normalized logarithmic
efficiency if

lim
ε→0

ln tn + ln E[γ̂ 2
n ]

ln γ
= 2.

Note nonetheless that those definitions of relative efficiency and
work-normalized logarithmic efficiency are good for comparing the relative mer-
its of two estimators, but are far from perfect definitions. Indeed, there are some
flaws in the above definitions. Computing times are usually random, so looking
at a fixed computing budget c might be misleading: the number of replications is
roughly c/t , but we would need this number to be uniformly bounded to make
sure that we can bound the error whatever ε. At least, it would be of interest
to consider the second moment of the computation time in the definition. This
would lead to what could be the valid definition of work-normalized relative
error, that is, the relative error for a computing budget c is bounded as ε → 0.
The above definitions, even if informative, are unfortunately more restrictive.
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4.4 Another key issue: confidence interval
coverage/reliability

Hitherto we have been dealing with the relative error uniformly in ε (or its weaker
work-normalized version), but always based on the idea that the coverage of the
confidence interval produced by the central limit theorem is always valid. Making
sure that the coverage of the confidence interval is uniformly bounded in ε is of
interest too.

Similarly, we have highlighted that, because it is the estimated (rather than
the exact) variance that is actually used in the confidence interval computation,
we may end up with the simple case of an interval (0, 0) because no occurrence
of the rare event is detected, but in any case, as illustrated by Section 4.4.1, with
an interval for which relative error seems bounded while it is not, and which does
not include the exact value. This unpleasant observation highlights the need to
design diagnostic procedures in order to point out if we are in this situation and is
the focus of Section 4.5. But first, Section 4.4.2 looks at a property asserting the
confidence interval coverage validity, while Section 4.4.3 reviews the coverage
function representing the actual coverage in terms of the nominal.

4.4.1 Reliability issue of the observed confidence interval

Consider again the illustrative Example 1, with γ estimated by means of γ̂ IS
n ,

where we fix the number n of samples, n = 104, using the same pseudo-random
number generator, and varying ε from 10−2 down to 0. Table 4.1 gives, for
different values of ε, 2ε2 (the equivalent of γ ), γ̂ IS

n , the IS estimator, and the
95% confidence interval obtained, together with the estimated variance σ̂n. The
estimated value becomes bad as ε → 0: observe that γ̂ IS

n seems to be close to
the expected value for ε ≥ 2 × 10−4, and that the confidence interval seems
suitable too, but, between 2 × 10−4 and 1 × 10−4, as ε decays, the results are far
from expectations and 2ε2 is not included in the confidence interval anymore.
Actually, in this estimation, some paths important for the estimation of γ and of

Table 4.1 Equivalent 2ε2 of γ , IS estimation γ̂ IS
n of γ , confidence interval

and estimated relative error for Example 1 using the failure biasing scheme
with q = 0.8, for a fixed sample size n = 104 and different values of ε

ε 2ε2 γ̂ IS
n Confidence Interval Est. RE

1e-02 2e-04 2.03e-04 (1.811e-04, 2.249e-04) 1.08e-01
1e-03 2e-06 2.37e-06 (1.561e-06, 3.186e-06) 3.42e-01
2e-04 8e-08 6.48e-08 (1.579e-08, 1.138e-07) 7.56e-01
1e-04 2e-08 9.95e-09 (9.801e-09, 1.010e-08) 1.48e-02
1e-06 2e-12 9.95e-13 (9.798e-13, 1.009e-12) 1.48e-02
1e-08 2e-16 9.95e-17 (9.798e-17, 1.009e-16) 1.48e-02
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Var(γ̂ IS
n ) (paths whose probability is �(ε2) under the original measure) are still

rare under the IS measure, leading to wrong estimations.
Let us look at this in some detail. Assume that n is fixed and ε → 0. At

some point, ε will be so small that transitions in �(ε) (see Figure 4.3) are not
sampled anymore (probabilistically speaking). Everything happens as if we were
working on the model depicted in Figure 4.4. Let us denote by P ′

F the subset of
PF whose paths belong to this last chain. The expectation of our estimator will
now be, on average,

γ̂ ′
n =

∑
π∈P ′

F

p(π) ≈ ε2

and, concerning the variance, we will get, also on average,

1

n

⎡
⎣ ∑

π∈P ′
F

p2(π)

p̃(π)
− (γ̂ ′

n)
2

⎤
⎦ ≈ 1 − q2

nq2
ε4.

This leads to a (mean) observed RE given by

RE ≈ 1.96
√

1 − q2

q
√

n
,

which is independent of ε. The reader can check that these formulas are coherent
with the numerical values observed for ε ≤ 10−4. So, this is a case where we
know that the relative error of the IS technique used is not bounded when rarity
increases, but where we numerically observe exactly the contrary. These problems
are much harder to detect than the (0, 0) interval case.

2,2

2,1 1,2

1,1

0

≈1

1–q

1–q

q

(1–q)/2

q/2

(1–q)/2

q/2

q

Figure 4.4 Model effectively ‘seen’ by the IS simulator when transitions in �(ε)

are not observed during n trajectories of the chain.
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The question therefore is: what is the validity of the proposed confidence
interval? The techniques presented in previous chapters (IS and splitting) consist
of different ways to speed up the rare event occurrence, but dealing with the
confidence interval coverage might still be an issue.

Consider now the classical M/M/1/B model, where we wish to evaluate
γ = P(reaching B before 0 | N(0) = 1) (this is Example 3 in Chapter 2), N(t)

being the number of customers at time t . More formally:

Example 3. Consider the discrete-time absorbing Markov chain X given in
Figure 4.5 and define γ = P(X(∞) = B | X(0) = 1). Observe that this is equal
to P(reaching B before 0 | N(0) = 1) in the M/M/1/B queue with arrival rate
λ and service rate μ, if p = λ/(λ + μ).

This is an elementary example in probability theory, and we know the answer:
γ = (r−1 − 1)/(r−B − 1) if r = μ/λ = (1 − p)/p �= 1 (if λ = μ, that is, if p =
1/2, then γ = 1/B). Suppose that we want to estimate γ using the standard
simulator. In this example, rarity comes from the combination of values of the
parameters p and B, the latter controlling the size of the model, a different
situation than in previous example. A typical line of analysis here involves fixing
p, varying B, and controlling rarity through ε = 1/B.

For instance, suppose that p = 0.4 and B = 40. The probability p is not very
small, but combined with the size of the chain, we get γ ≈ 4.5 × 10−8. Suppose
we try an IS scheme by simply changing the probability p into some p̃ > 1/2, for
instance, p̃ = 0.9, and that we simulate n = 105 paths of the chain. A standard
implementation of this gave the approximate estimate 6.5 × 10−10 and estimated
RE ≈ 40%. Without knowing the exact value, it is difficult to detect that there is
a problem. If we refer to the previous ideas, we can imagine the user increasing
B (i.e., increasing rarity), and looking at the behavior of the relative error. In
Table 4.2 we provide some numerical results obtained by keeping everything
fixed except B, which we increase.

The user may think that the RE looks bounded (while being pretty large), but
observe that the exact value is never included in the observed confidence interval.
We can suspect the same problem as before, even if the numerical behavior is
not exactly the same. Looking again at the case of B = 40, it seems reasonable
to try increasing the sample size. Keeping everything fixed except the sample
size n = 106, we get an estimate of 1.62 × 10−9 with a relative error ≈ 39%.
Again, we can suspect the same phenomenon as for the previous example.

0 1 2 3 B–1 B

p p p

1–p 1–p 1–p

1 1

. . . . . .

Figure 4.5 Discrete-time Markov chain X associated with the M/M/1/B model,
used to compute γ = P(X(∞) = B | X(0) = 1).
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Table 4.2 Estimating γ in the M/M/1/B model,
with p = 0.4, using n = 105 samples and the failure
biasing change of measure with p̃ = 0.9, for different
values of the buffer size B. The table gives the exact
value of γ , its IS estimate and the estimated RE

B γ γ̂ IS Est. RE

40 4.52e-08 6.50e-10 40%
50 7.84e-10 2.46e-12 80%
60 1.36e-11 2.34e-14 120%
70 2.36e-13 1.11e-17 45%

100 1.23e-18 2.21e-24 102%

We observe that in the family of IS methods where the new measure is
state-independent (see Chapter 2), the best change of measure for this queue is
known: it involves swapping the arrival and the service rate, or equivalently,
using p̃ = 1 − p in discrete time [9]. If we do so, we can check that things go
smoothly, and that the estimators behave correctly (no anomaly in the behavior
of the RE, nor on the observed likelihood ratio).

The aim of the rest this chapter is to discuss the following questions. How
can we define a good estimator? Can it be good whatever the rarity? Can we
detect in practice whether an estimate is good or not?

4.4.2 Normal approximation

In [15, 16], the bounded normal approximation (BNA) property is defined, assert-
ing that the Gaussian approximation on which the confidence interval, and thus
the confidence interval coverage, is based remains uniformly bounded as ε tends
to 0. It finds its roots in the Berry–Esseen theorem which states that if � is the
third absolute moment of each of the n independently and identically distributed
copies Xi of random variable X (with σ 2 its variance), � the standard normal dis-
tribution, γ̂n = n−1 ∑n

i=1 Xi , σ̂ 2
n = n−1 ∑n

i=1(Xi − γ̂n)
2 and Fn the distribution

of the centered and normalized sum (γ̂n − γ )/σ̂n, then there exists an absolute
constant a > 0 such that, for each x and n,

|Fn(x) − �(x)| ≤ a�

σ 3
√

n
.

Definition 6. We say that γ̂n satisfies the bounded normal approximation property
if �/σ 3 remains bounded as ε → 0.

When this property is satisfied, only a fixed number of iterations are required
to obtain a confidence interval having a fixed error no matter the level of rarity.

We could also look at a stricter condition, by making sure that the variance
satisfies BRE. This is a stricter condition than BNA because it means looking at
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the fourth moment divided by the square of the variance, and, from the Jensen
inequality, BRE for the variance implies BNA [17].

In [15], an example is given where BRE is satisfied, but not BNA, so the cov-
erage of the confidence interval is not validated. BRE is therefore not sufficient
alone to guarantee the robustness of a rare event estimator.

Note that BNA is a sufficient condition for coverage certification, and not
a necessary one [15]. For instance, there exist more general versions of the
Berry–Esseen bound (see [10]) for which the moment of order 2 + δ is used (with
δ > 0) instead of the third moment, being then less restrictive. Note nonetheless
that this is at the expense of the convergence rate to the Gaussian distribution,
O(n−δ/2) instead of O(n−1/2). A generalized version of BNA property could
then be as follows:

Definition 7. We say that γ̂n satisfies bounded normal approximation if there
exists δ > 0 such that E[|X − γ |2+δ]/σ 2+δ remains bounded as ε → 0.

4.4.3 Coverage function

In order to more directly investigate the actual coverage of confidence intervals
for small values of ε when the number of replications is fixed, we can look at
the so-called coverage function defined by L.W. Schruben in [13]. Define

R(η, X) =
(

γ̂n − cη

σ̂n√
n
, γ̂n + cη

σ̂n√
n

)

as the confidence interval at confidence level η obtained using data

X = (Xi)1≤i≤n

(i.e., cη = �−1((1 + η)/2)). Under normality assumptions, it is easy to show that
P[γ ∈ R(η, X)] = η. Now define the random variable

η∗ = inf{η ∈ [0, 1] : γ ∈ R(η, X)}.
η∗ should be uniformly distributed, that is,

Fη∗(η) = P[η∗ ≤ η] = η.

Not satisfying normal assumptions leads to two potential sources of error:

• Fη∗(η) < η may lead to wrong conclusions (lower coverage),

• while if Fη∗(η) >η the method is not efficient because a smaller sample
size could have been used to get the desired coverage.
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In order to investigate the actual coverage function, one can consider independent
blocks of data X = (Xi)1≤i≤n, producing independent realizations of η∗, from
which its empirical distribution can be deduced. Reproducing it for different
values of ε and looking at deviations from the uniform distribution illustrates the
robustness of the estimator. This will be helpful below when discussing possible
diagnostic-oriented approaches.

4.5 Diagnostics ideas

This section discusses the issue of detecting potential problems associated with
the reliability of rare event confidence intervals. We will review three ideas to deal
with these problems from a diagnostic point of view. First, we will see that using
the fact that the expectation of the likelihood ratio equals unity in an importance
sampling situation, a relevant idea a priori, is actually not of value when dealing
with rare events. Second, we look at the possible numerical anomalies that can
occur when looking at the behavior of the relative error as the system becomes
rarer. A last diagnostic possibility is to make use of the covering function, that
is, to look at how far the empirical coverage function is from the uniform.

4.5.1 Checking the value of the expected likelihood ratio

How should a test concerning the reliability of the confidence interval be con-
structed? A first thought would be to look at properties of the likelihood ratio
when dealing with IS. Consider the expected value of a random variable X under
probability measure P. IS generates an unbiased estimator by using an IS mea-
sure P̃ with dP̃ �= 0 when XdP �= 0. Indeed, we then have Ẽ[XL] = E[X] = γ

with L = dP/dP̃ the likelihood ratio (see Chapter 2). We can then easily see
that, with the more stringent condition that dP̃ �= 0 when dP �= 0, the expected
value of the likelihood ratio is exactly 1. We will assume that this condition is
satisfied for the remainder of this subsection, but remark that it is not true in
general since we can construct unbiased IS estimates of γ for which dP̃ = 0
when X = 0, such as the zero-variance change of measure.

This observation on the expected value of L could be thought to be a basis for
designing a diagnostic: at the same time as we perform the computations needed
to construct γ̂ IS

n and the associated confidence interval, we do the same for esti-
mating Ẽ[L]. If the confidence interval obtained does not contain the exact value
1 under the condition that dP̃ �= 0 when dP �= 0, one has to exercise caution.

Why does this diagnostic not work in general? Let X be the the indicator
function of a rare set A, that is, γ = E[ (A)] = Ẽ[L (A)]. Then, defining Ac as
the complementary set of A and from the expected value of the likelihood ratio,
we get

1 = Ẽ[L (A)] + Ẽ[L (Ac)] = γ + Ẽ[L (Ac)].
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In order to use a test based on Ẽ[L] = 1, the variance of L has to be small enough
so that we do not encounter the aforementioned problems where its variance is
underestimated because the second moment has large values with small proba-
bility (so that those cases are not reached for a small to moderate sample size
n) under P̃, and small vales with high probability. Therefore, Ṽar[L (Ac)]/n has
to be small. This is unfortunately not the case in general because the IS scheme
is designed to have a small variance for random variable L (A), not for L. We
indeed have L � 1, very small on A to be as close as possible to the value of
γ for reducing the variance of the estimator, but L � 1 is likely to happen at
some values in Ac.

The next example illustrates this problem of a properly designed IS scheme
for which such a test is not going to work well.

Example 4. Consider a random walk Sn = X1 + · · · + Xn on the integers or
on the reals, starting from 0, where the Xi are independently and identically
distributed with cumulative distribution function F . We wish to estimate the
probability γ of reaching a level b > 0 before a level −k < 0. It is assumed that
the random walk has a negative drift, meaning that the probability of going up,
Xi > 0, is smaller that that of going down, Xi < 0, leading to a small value of γ .
A class of IS measures, called exponential twisting , makes use of large deviations
(see Chapter 5 for more details on the application of large-deviations theory to
random walks). The exponentially twisted IS measure involves replacing dF by

dF̃ = eθx

M(θ)
dF (x)

with M(θ) = E[eθX1 ], the moment generation function of the Xi . It is known that
there exists a θ∗ for which M(θ∗) = 1, and that this IS scheme yields logarithmic
efficiency. Let us now investigate more closely the behavior of the likelihood
ratio. On the paths for which b is reached before −k, we have L ≈ e−θ∗b, while
L ≈ eθ∗k on paths for which −k is reached before, with probability of the order
of e−θ∗k.

Now, if the sample size n � eθ∗k, we will therefore end up with an estimation
of Ẽ[L] ≈ e−θ∗b because −k is unlikely to be reached, with a small sample
variance too. Worse, to get an estimate around 1 as expected, we need n � eθ∗k,
which can take a longer time if k >b than in the case of crude Monte Carlo, for
which n has to be larger than eθ∗b on the average.

Another interesting remark arises from looking at Example 1. In that case,
estimating the expected value of the likelihood ratio always provides a confi-
dence interval for this expectation that includes 1. For instance, using the same
numerical values as in Table 4.1, varying ε in the same way, we get for the
mean likelihood ratio under the IS measure almost the same confidence interval
(0.99, 1.07). A test is therefore not able to detect the difficulty of estimating γ

for that kind of example. It is actually the opposite problem than in previous
example: it does not provide a warning even if it should, while for the random
walk example, it provides an irrelevant warning.



ROBUSTNESS AND CONFIDENCE INTERVAL RELIABILITY 79

4.5.2 Observed relative error behavior

In Section 4.4.1 we discussed the fact that, in some cases, the simulation tech-
nique can degrade when rarity increases, but the numerical values coming from
the simulation run hides this phenomenon, leading the user to accept incorrect
results. We illustrated this by means of an example where rarity is parameterized
by ε, and where in spite of the fact that RE is unbounded as ε → 0, we will
necessarily observe that RE suddenly becomes essentially constant, that is, inde-
pendent of ε. Of course, this is not a systematic fact appearing in these contexts,
but it simply underlines the necessity of being careful if we observe this type of
behavior.

Specifically, as a diagnostic rule, the idea is to simulate (with small sample
sizes) the network for different values of ε larger than in the original problem, that
is, to simulate much less rare events, with a small and fixed sample size, before
running the ‘real’ simulation if things seem to go well. What is the incorrect
behavior we try to detect? We look to see whether the estimated relative variance
seems first to increase, then suddenly drops and stays fixed. This is due to the fact
that important events (or paths, depending on the context) in terms of contribution
to the variance (and to the estimation itself), are not sampled anymore. This
trend of regular growth and sudden drop is likely to be a good hint of rare event
problems.

An illustration of this was provided by Example 1, Table 4.1. If we use a
sample size n = 1000, ten times smaller than that used in Table 4.1, we observe
the same phenomenon, always coherent with the formulas given in Section 4.4.1.
We observed the same behavior with different configurations.

This type of phenomenon does not appear in the case of the M/M/1/B model
presented in Example 3. Increasing B (see Table 4.2), we observe fluctuations of
the relative error, but no trend similar to that exhibited before. The diagnostic can
hardly be conclusive in this model, as it was in the first example. This illustrates
that the tests of the section are traditional rejection tests.

Let us now consider another example [1]:

Example 5. Consider the discrete-time Markov chain X given in Figure 4.6 and
define γ = E(K−1 ∑K

k=1 1(X(k) = 1) | X(0) = 1).

0 1

a

b

1–a 1–b

Figure 4.6 A two-state Markov chain. We look at the average fraction of interval
{1, 2, . . . , K} where the chain is in state 1, starting at state 0 at time 0.
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The exact value of γ is

γ = a

a + b

[
1 − (1 − a − b)

1 − (1 − a − b)K

K(a + b)

]
.

Assume nevertheless that we use IS to estimate γ and let us consider the cases
where

P =
(

0.99 0.01
0.1 0.9

)
, P̃ =

(
0.4 0.6
0.5 0.5

)
.

We look for the value of γ when K = 30. We know that the exact answer is
γ ≈ 6.713−2, and, of course, this is easy to estimate with the crude estimator.
We used the proposed IS scheme for n = 105 samples, changing the seed of the
pseudo-random number generator. We got the results shown in Table 4.3. We
can observe here that over these six runs, the relative error fluctuates without a
clear trend, but in five of the six cases, the exact value is outside the confidence
interval (the case where the exact value is in the confidence interval is for seed).

If we increase the value of K , increasing the possible number of paths, we
get the results given in Table 4.4. The RE exhibits no trend again, but we know
that the estimations are horribly bad, and that the exact value is never inside the
obtained confidence intervals.

In conclusion, for this test, involving checking the behavior of the relative
error as a function of rarity, for small sample sizes, we observe good results when
rarity is associated with transitions and the state space has a fixed topology, and
no clear indications when rarity comes from the increasing length of good paths,
as in the M/M/1/B case.

Table 4.3 Estimating γ (whose value is 6.713−2) in the two-state Markov
chain of Example 5, with a = 0.01, b = 0.1, ã = 0.6, b̃ = 0.5, K = 30, for
different seeds (using drand48( ) under Unix), for n = 105 samples

seed 314159 31415 3141 314 31 3

γ̂ IS
n 1.949e-04 1.583e-04 1.282e-04 2.405e-01 6.089e-05 1.021e-04

RE 9.636e-01 8.637e-01 1.667e00 1.958e00 1.263e00 9.686e-01

Table 4.4 Estimating γ in the two-state Markov chain of
Example 5, with a = 0.01, b = 0.1, ã = 0.6, b̃ = 0.5, for
different values of K , using n = 105 samples and the same
seed (272, with drand48( ) under Unix)

K 30 50 70 90

γ 6.713e-02 7.624e-02 8.040e-02 8.274e-02
γ̂ IS

n 4.099e-05 1.748e-10 4.104e-14 2.554e-23
RE 8.723e-01 1.189e00 1.937e00 1.433e00
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4.5.3 Diagnostic based on the coverage function

A last diagnostic possibility is to make use of Schruben’s coverage function. The
algorithm can be described as follows, as hinted in the description of the coverage
function. Befored starting to run the (real) simulation, consider smaller sample
sizes n and k values of ε, the rarity parameter, {εj ; 1 ≤ j ≤ k} with ε1 > · · · >εk .
For each value εj , m independent blocks of data X = (Xi(ε))1≤i≤n are then used,
giving independent realizations of η∗. From those m realizations, the empirical
distribution of η∗ can be obtained and compared with the uniform distribution.
Then one can see if there is a trend: if the empirical distribution gets farther from
the uniform as εj decreases, the current estimator can be considered as non-robust
(unreliable), and a better one should be chosen. Otherwise, the estimator is not
rejected by the test.

An important remark is that, in order to apply this diagnostic, the exact
value (or at least an equivalent as ε → 0) has to be known for computing η∗.
As a consequence, the diagnostic can only be used for small instances of the
problem. For example, when estimating the probability in an M/M/1 queue
that the occupancy exceeds a value B (with B large), the exact value can be
estimated for smaller values of B, and a trend can be derived. The same applies
when dealing with a Markov chain on a small state space, but looking at long
simulation times T (such as in Example 5 above), by looking at smaller values of
T . The case of large Markov chains where rarity comes from rare transitions is
more difficult. But one can try to construct a smaller instance of the model, with
similar topology or properties (we do not care about the result being the same)
and for which the exact value is known, and look to see whether the coverage
function does not deviate as critical transition probabilities decrease. Our three
examples describe those three situations and are detailed now.

Figure 4.7 displays the coverage function for the M/M/1 queue, looking at
the probability that B is reached before returning to 0. This is done for sample
sizes n = 1000 and repeated k = 500 times in order to get the empricial distribu-
tion function (smoothed thanks to interpolation). In the numerical experiments,
p = 0.3 and we chose p̃ = 0.5 (not the optimal value, but to illustrate the behav-
ior). It can be seen that as B increases, the coverage function gets worse and
worse, so the estimator is not good here.

Look now at the case of the 2 × 2 matrix of Example 5, with transition
matrices

P =
(

0.2 0.8
0.2 0.8

)
, P̃ =

(
0.5 0.5
0.5 0.5

)
.

Again, we take n = 1000 and k = 500. From Figure 4.8, it can be checked that as
the length K of the simulation path increases, the coverage function gets worse
and worse, illustrating the bad estimation.

We close our numerical illustrations with Example 1. Figure 4.9 displays
the empirical coverage function for different values of ε, still with n = 1000
and k = 500. Again, as ε decreases, the coverage function gets farther from the
uniform, denoting an undesirable behavior.
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Figure 4.7 Coverage function for the simulation of the M/M/1 queue when look-
ing at the probability of exceeding threshold B.
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Figure 4.8 Coverage function for the simulation of a two-state Markov chain, as
the length K of simulation increases.
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Figure 4.9 Coverage function for Example 1 and various values of ε.

4.6 Conclusions

We discussed the robustness properties (i.e., relative error behavior as the prob-
ability of the event goes to zero) we must require an estimator to satisfy when
dealing with rare events in a simulation. Together with an overview of these
properties and their relations, this chapter also underlined less known problems
the practitioner may encounter in this area, concerning the reliability of the con-
fidence interval. The typical situation is a numerical evaluation that can be taken
as correctly done, while actually the output of the simulation procedure is com-
pletely off target. One of the aims of this chapter is to discuss possible ways of
coping with this situation, and to suggest lines of research to derive rules that
can be used as diagnostic methods mainly leading to a ‘warning’ signal along
the lines of ‘the results of the simulation are suspicious, take care’. But what
if such a signal is received? The best advice is to try a different method, or a
different parameterization of the technique used.

We concentrated our examples on importance sampling procedures, since this
is the most used technique for rare event analysis, and also because it is the one
most studied. Observe that the problems underlined here are related to rarity, not
just to importance sampling. Also, the rules for detecting problems proposed in
this chapter are valid for acceleration methods other than IS-based ones (except
obviously for the use of the expected likelihood ratio).
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