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Introduction: rare events

Rare events occur when dealing with performance evaluation in many
different areas

in telecommunication networks: loss probability of a small unit of
information (a packet, or a cell in ATM networks), connectivity of a
set of nodes,

in dependability analysis: probability that a system is failed at a given
time, availability, mean-time-to-failure,

in air control systems: probability of collision of two aircrafts,

in particle transport: probability of penetration of a nuclear shield,

in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

in finance: value at risk (maximal loss with a given probability in a
predefined time),

...
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What is a rare event? Why simulation?

A rare event is an event occurring with a small probability.

How small? Depends on the context.

In many cases, these probabilities can be between 10−8 and 10−10, or
even at lower values. Main example: critical systems, that is,

◮ systems where the rare event is a catastrophic failure with possible
human losses,

◮ or systems where the rare event is a catastrophic failure with possible
monetary losses.

In most of the above problems, the mathematical model is often too
complicated to be solved by analytic or numeic methods because

◮ the assumptions are not stringent enough,
◮ the mathematical dimension of the problem is too large,
◮ the state space is too large to get a result in reasonable time,
◮ ...

Simulation is, most of the time, the only tool at hand.
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Example: Highly Reliable Markovian Systems (HRMS)

System with c types of
components. Y = (Y1, . . . ,Yc)
with Yi number of up
components.

1: state with all components up.

Markov chain. Failure rates are
O(ε), but not repair rates. Failure
propagations possible.

System down when in grey
state(s).

Goal: compute µ(y) probability to
hit ∆ before 1.

µ(1) important in dependability
analysis,

Small if ε small.

2, 2
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1, 1
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1
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ε
1/2 ε2

1/2

ε2
ε2

ε
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Example: connectivity within a graph

Static reliability problems (time is
not an explicit variable)

Communication network:

◮ nodes assumed to be perfect,
◮ links can fail independently.
◮ For each edge e, elementary

unreliability qe , reliability
re = 1− qe .

◮ The network works iff two
specific nodes communicate.

Model: graph with M links

X = (X1, . . . ,XM) (random)
configuration with Xe = 1 if edge
e works, 0 otherwise.

state of the system: φ(X ), where
φ(X ) = 1 iff s and t not
connected.

u = E[φ(X )] , computation
NP-hard problem in general.

u small if individual unreliabilities
small and/or redundancy of paths.

A

B

C

D

q1 = ǫ

q2 = ǫ

q4 = ǫ

q5 = ǫ

q3 = ǫ
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Monte Carlo

In all the above problems, the goal is to compute µ = E[X ] of some
random variable X .

Monte Carlo simulation (in its basic form) generates n independent
copies of X , (Xi , 1 ≤ i ≤ n),

X̄n = (1/n)
∑n

i=1Xi approximation of µ.

Almost sure convergence as n → ∞ (law of large numbers).

Accuracy: central limit theorem, yielding a confidence interval

µ ∈
(

X̄n −
cασ√
n
, X̄n +

cασ√
n

)

◮ α: desired confidence probability,
◮ cα = Φ−1(1 − α

2 ) with Φ is the cumulative Normal distribution
function of N (0, 1)

◮ σ2 = Var[X ] = E[X 2]− (E[X ])2, estimated by
S2
n = (1/(n− 1))

∑n

i=1 X
2
i − (n/(n − 1))(X̄n)

2.
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Inefficiency of crude Monte Carlo
Crude Monte Carlo: simulates the model directly
We compute the probability µ = E[1A] << 1 of a rare event A.
Xi Bernoulli r.v.: 1 if the event is hit and 0 otherwise.
To get a single occurence, we need in average 1/µ replications (109

for µ = 10−9), and more to get a confidence interval.
nX̄n Binomial with parameters (n, µ) and the confidence interval is

(

X̄n −
cα
√

µ(1− µ)√
n

, X̄n +
cα
√

µ(1− µ)√
n

)

.

Relative half width cασ/(
√
nµ) = cα

√

(1− µ)/µ/n → ∞ as µ → 0.
For a given relative error RE , the required value of

n = (cα)
2 1− µ

RE 2µ
,

inversely proportional to µ.
Two main families of techniques:

◮ Splitting
◮ Importance Sampling
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Robustness properties

In rare-event simulation models, we often parameterize with a rarity
parameter ǫ > 0 such that µ = E[X (ǫ)] → 0 as ǫ → 0.

An estimator X (ǫ) is said to have bounded relative variance (or
bounded relative error) if σ2(X (ǫ))/µ2(ǫ) is bounded uniformly in ǫ.

Interpretation: estimating µ(ǫ) with a given relative accuracy can be
achieved with a bounded number of replications even if ǫ → 0.

Weaker property: asymptotic optimality (or logarithmic efficiency) if
limǫ→0 ln(E[X

2(ǫ)])/ ln(µ(ǫ)) = 2.

Stronger property: vanishing relative variance: σ2(X (ǫ))/µ2(ǫ) → 0
as ǫ → 0. Asymptotically, we get the zero-variance estimator.

Other robustness measures exist (based on higher degree moments,
on the Normal approximation, on simulation time...).

L’Ecuyer, Blanchet, T., Glynn, ACM ToMaCS 2010
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Importance Sampling (IS)

Let X = h(Y ) for some function h where Y obeys some probability
law P.
IS replaces P by another probability measure P̃, using

E [X ] =

∫

h(y)dP(y) =

∫

h(y)
dP(y)

d P̃(y)
d P̃(y) = Ẽ [h(Y )L(Y )]

◮ L = dP/d P̃ likelihood ratio,
◮ Ẽ is the expectation associated to probability law P.

Required condition: d P̃(y) 6= 0 when h(y)dP(y) 6= 0.

If P and P̃ continuous laws, L ratio of density functions.

If P and P̃ are discrete laws, L ratio of indiv. prob.

Unbiased estimator:
1

n

n
∑

i=1

h(Yi)L(Yi ) with (Yi , 1 ≤ i ≤ n) i.i.d;

copies of Y , according to P̃.

Goal: select probability law P̃ such that

σ̃2[h(Y )L(Y )] = Ẽ[(h(Y )L(Y ))2]− µ2 < σ2[h(Y )].
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IS difficulty: system with exponential failure time

Goal: to compute µ that the system fails before T ,
µ = E[1A(Y )] = 1− e−λT .

Use for IS an exponential density with a different rate λ̃

Ẽ[(1A(Y )L(Y ))2] =

∫ T

0

(

λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy =
λ2(1− e−(2λ−λ̃)T )

λ̃(2λ − λ̃)
.

Variance ratio for T = 1 and λ = 0.1:

λ̃
λ = 0.1 1 2 3 4 5 6 7

variance ratio σ̃2(1A(Y )L(Y ))/σ2(1A(Y ))

0

0.5

1

1.5

2
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Optimal estimator for estimating E[h(Y )] =
∫

h(y)L(y)d P̃(y)

Optimal change of measure:

d P̃ =
|h(Y )|

E[|h(Y )|]dP.

Proof: for any alternative IS measure P
′, leading to the likelihood

ratio L′ and expectation E
′,

Ẽ[(h(Y )L(Y ))2] = (E[|h(Y )|])2 = (E′[|h(Y )|L′(Y )])2 ≤ E
′[(h(Y )L′(Y ))2].

If h ≥ 0, Ẽ[(h(Y )L(Y ))2] = (E[h(Y )])2, i.e., σ̃2(h(Y )L(Y )) = 0.
That is, IS provides a zero-variance estimator.

Implementing it requires knowing E[|h(Y )|], i.e. what we want to
compute; if so, no need to simulation!

But provides a hint on the general form of a “good” IS. measure.
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IS for a discrete-time Markov chain (DTMC) {Yj , j ≥ 0}
X = h(Y0, . . . ,Yτ ) function of the sample path with

◮ P = (P(y , z) transition matrix, π0(y) = P[Y0 = y ], initial probabilities
◮ up to a stopping time τ , first time it hits a set ∆.
◮ µ(y) = Ey [X ].

IS replaces the probabilities of paths (y0, . . . , yn),

P[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] = π0(y0)
n−1
∏

j=1

P(yj−1, yj),

by P̃[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] st Ẽ[τ ] < ∞.

For convenience, the IS measure remains a DTMC, replacing P(y , z)
by P̃(y , z) and π0(y) by π̃0(y).

Then L(Y0, . . . ,Yτ ) =
π0(Y0)

π̃0(Y0)

τ−1
∏

j=1

P(Yj−1,Yj)

P̃(Yj−1,Yj)
.
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Zero-variance IS estimator for Markov chains simulation

Restrict to an additive (positive) cost

X =

τ
∑

j=1

c(Yj−1,Yj)

Is there a Markov chain change of measure yielding zero-variance?

Yes we have zero variance with

P̃(y , z) =
P(y , z)(c(y , z) + µ(z))

∑

w P(y ,w)(c(y ,w) + µ(w))

=
P(y , z)(c(y , z) + µ(z))

µ(y)
.

Without the additivity assumption the probabilities for the next state
must depend in general of the entire history of the chain.
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Zero-variance for Markov chains

Proof by induction on the value taken by τ , using the fact that
µ(Yτ ) = 0 In that case, if X̃ denotes the IS estimator,

X̃ =
τ
∑

i=1

c(Yi−1,Yi )
i
∏

j=1

P(Yj−1,Yj)

P̃(Yj−1,Yj)

=
τ
∑

i=1

c(Yi−1,Yi )
i
∏

j=1

P(Yj−1,Yj)µ(Yj−1)

P(Yj−1,Yj)(c(Yj−1,Yj) + µ(Yj ))

=
τ
∑

i=1

c(Yi−1,Yi )
i
∏

j=1

µ(Yj−1)

c(Yj−1,Yj) + µ(Yj )

= µ(Y0)

Unique Markov chain implementation of the zero-variance estimator.

Again, implementing it requires knowing µ(y) ∀y , the quantities we
wish to compute.

Approximation to be used.
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Zero-variance approximation

Use a heuristic approximation µ̂(·) and plug it into the zero-variance
change of measure instead of µ(·).
More efficient but also more requiring technique: learn adaptively
function µ(·), and still plug the approximation into the zero-variance
change of measure formula instead of µ(·).

◮ Adaptive Monte Carlo (AMC) proceeds iteratively.
⋆ Considers several steps and ni independent simulation replications at

step i .
⋆ At step i , replaces µ(x) by a guess µ(i)(x)

⋆ use probabilities P̃(i)
y,z =

Py,z (cy,z + µ
(i)(z))

∑
w
Py,w (cy,w + µ(i)(w))

.

⋆ Gives a new estimation µ
(i+1)(y) of µ(y), from which a new transition

matrix P̃(i+1) is defined.
◮ Adaptive stochastic approximation (ASA) updates the probabilities at

each step of the simulation.
◮ But those methods require to store a lot of information for large

systems.

Other methods, based on subsolutions of Isaac equations (P. Dupuis et

al.) or the construction of Lyapounov functions (Blanchet, Glynn et al.).
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Illustration of heuristics: birth-death process

Let P(i , i + 1) = p and P(i , i − 1) = 1− p for 1 ≤ i ≤ B − 1, and
P(0, 1) = P(B ,B − 1) = 1.

We want to compute µ(1), probability of reaching B before coming
back to 0.

If p small, to approach µ(·), we can use

µ̂(y) = pB−y ∀y ∈ {1, . . . ,B − 1}

with µ̂(0) = 0 and µ̂(B) = 1 based on the asymptotic estimate
µ(i) = pB−i + o(pB−i ).

We can verify that the variance of this estimator is going to 0 (for
fixed sample size) as p → 0.
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Highly Reliable Markovian Systems (HRMS)

System with c types of components. Y = (Y1, . . . ,Yc) with Yi

number of up components.

1: state with all components up.

Failure rates are O(ε), but not repair rates. Failure propagations
possible.

System down (in ∆) when some combinations of components are
down.

Goal: compute µ(1) with µ(y) probability to hit ∆ before 1.

Simulation using the embedded DTMC. Failure probabilities are O(ε)
(except from 1). How to improve (accelerate) this?

Existing method: ∀y 6= 1, increase the probability of the set of
failures to constant 0.5 < q < 0.9 and use individual probabilities
proportional to the original ones (SFB), or uniformly (BFB).

Failures not rare anymore. BRE property verified for BFB.
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HRMS Example, and IS

2, 2

2, 1 1, 2

1, 1

0

1
1 ε

1

ε
1/2 ε2

1/2

ε2
ε2

ε

Figure: Original probabilities
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2, 1 1, 2

1, 1

0

1/2

1− q 1/2
1− q

q/2
(1 − q)/2

q/2

(1 − q)/2

q/2q/2

q

Figure: Probabilities under IS/BFB
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HRMS, Zero-variance IS L’Ecuyer & T., ANOR, to appear

Complicates the previous model due to the multidimensional
description of a state.

The idea is to approach µ(y) by the probability of the path from y to
∆ with the largest probability

Intuition: as ǫ → 0, we get a good idea of the probability.

Proposition

Bounded Relative Error proved (as ǫ → 0) in general.
Even Vanishing Relative Error if µ̂(y) contains all the paths with the
smallest degree in ǫ.

Other simple version: approach µ(y) by the (sum of) probability of
paths from y with only failure components of a given type.

Gain of several orders of magnitudes + stability of the results with
respect to the literature.
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HRMS: numerical illustrations

Comparison of BFB and Zero-Variance Approximation (ZVA).

c = 3 types of components, ni of type i

λ1 = ε, λ2 = 1.5ε, and λ3 = 2ε2, µ = 1

System is down whenever fewer than two components of any one type are
operational.

ni ε µ0 BFB est ZVA est BFB σ2 ZVA σ2

3 0.001 2.6× 10−3 2.7× 10−3 2.6× 10−3 6.2× 10−5 2.2× 10−8

6 0.01 1.8× 10−7 1.9× 10−7 1.8× 10−7 6.3× 10−11 2.0× 10−14

6 0.001 1.7× 10−11 1.8× 10−11 1.7× 10−11 8.8× 10−19 1.2× 10−23

12 0.1 6.0× 10−8 4.8× 10−8 6.0× 10−8 8.1× 10−10 1.6× 10−10

12 0.001 3.9× 10−28 (1.8× 10−40) 3.9× 10−28 (3.2 × 10−74) 1.4× 10−55
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Graph model
M links can fail independently, elementary unreliability qe = 1− re for edge
e.

What is the probability that the set K of (grey) nodes is connected (in the
underlying random partial graph of G)?
X = (X1, . . . ,XM) (random) configuration with Xe = 1 if edge e works, 0
otherwise.

state of the system: φ(X ), where φ(X ) = 1 iff K not connected.

u = E[φ(X )] =
∑

x∈{0,1}M φ(x)P[X = x ].
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Graph model
M links can fail independently, elementary unreliability qe = 1− re for edge
e.

What is the probability that the set K of (grey) nodes is connected (in the
underlying random partial graph of G)?
X = (X1, . . . ,XM) (random) configuration with Xe = 1 if edge e works, 0
otherwise.

state of the system: φ(X ), where φ(X ) = 1 iff K not connected.

u = E[φ(X )] =
∑

x∈{0,1}M φ(x)P[X = x ].

We have to sum over the 2M configurations.
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Zero-variance est. L’Ecuyer, Rubino, Saggadi & T., IEEE Trans. Rel. 2011

Idea: sample the links one after the other, with an IS probability that
depends on the state of previously sampled links.

Let um(x1, · · · , xm−1), with xi ∈ {0, 1}, be the unreliability of the
graph G given the states of the links 1 to m− 1: if xi = 1 the link i is
operational, otherwise it is failed.

Then u = u1().

Sample state of link m, giving 1 with probability:

r ′m(x1, · · · , xm−1) =
rmum+1(x1, · · · , xm−1, 1)

rmum+1(x1, · · · , xm−1, 1) + (1− rm)um+1(x1, · · · , xm−1, 0)
.

Remark (by conditionning) that

um(x1, · · · , xm−1) = rmum+1(x1, · · · , xm−1, 1) + (1 − rm)rmum+1(x1, · · · , xm−1, 0).
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Zero-variance estimation and approximation

Proposition

Using this IS, the estimator has zero variance (always yields u).

Problem: the um(·) are not known, otherwise no need to simulate.

Principle: approach um(·) by some ûm(·) and use

r
′

m(x1, · · · , xm−1) =
rmûm+1(x1, · · · , xm−1, 1)

rmûm+1(x1, · · · , xm−1, 1) + (1− rm)ûm+1(x1, · · · , xm−1, 0)
.
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Approximation of the zero-variance estimator

Our proposal: ûm(x1, · · · , xm−1) is the probability of a mincut of the
graph with highest probability, given the state of links 1 to m − 1.

◮ A cut (or K-cut) is a set of edges such that, if we remove them, the
nodes in K are not in the same connected component.

◮ A mincut (minimal cut) is a cut that contains no other cut than itself.

Intuition: the unreliability is the probability of union of all cuts, the
most crucial one(s) being the mincut(s) with highest probability.

Cuts can be obtained in polynomial time.

In a given state (x1, · · · , xm−1), we need to determine
ûm+1(x1, · · · , xm−1, 1) and ûm+1(x1, · · · , xm−1, 0).

This adds some computational burden, but should substantially
reduce the variance.

Proposition

Bounded relative error proved in general,
Vanishing relative error under identified conditions.
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Ex: dodecahedron topology, all links with unreliability ǫ

A
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28

2930

ǫ Estimation Confidence interval Std deviation Relative error
10−1 2.8960 10−3 (2.8276 10−3, 2.9645 10−3) 3.49 10−3 1.2
10−2 2.0678 10−6 (2.0611 10−6, 2.0744 10−6) 3.42 10−7 0.17
10−3 2.0076 10−9 (2.0053 10−9, 2.0099 10−9) 1.14 10−10 0.057
10−4 2.0007−12 (2.0000 10−12, 2.0014 10−12) 3.46 10−14 0.017

With respect to crude MC, a computational time increase of 16.
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Larger networks: 3 dodecahedrons in parallel

A dodec. 1

dodec. 2

dodec. 3

B

ǫ Estimate 95% confidence interval std dev. Relative Error

10−1 2.3573 × 10−8 (2.2496 × 10−8, 2.4650 × 10−8) 5.49 × 10−8 2.3

5 × 10−2 2.5732 × 10−11 (2.5138 × 10−11, 2.6327 × 10−11) 3.03 × 10−11 1.2

10−2 8.7655 × 10−18 (8.7145 × 10−18, 8.8165 × 10−18) 2.60 × 10−18 0.30

Vanishing relative error observed

For 3 dodecahedron in series, Bounded relative error observed

Works very well for such topologies with close to 100 links, and larger.
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Conclusions: book advertisements
Released in March 2009 (John Wiley & Sons):

In March 2010 (éditions Hermès):
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