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Introduction: rare events

Rare events occur when dealing with performance evaluation in many
different areas

@ in telecommunication networks: loss probability of a small unit of
information (a packet, or a cell in ATM networks), connectivity of a
set of nodes,

@ in dependability analysis: probability that a system is failed at a given
time, availability, mean-time-to-failure,

in air control systems: probability of collision of two aircrafts,
in particle transport. probability of penetration of a nuclear shield,
in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

e © ¢ ¢ ¢

in finance: value at risk (maximal loss with a given probability in a
predefined time),

o ...
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What is a rare event? Why simulation?

@ A rare event is an event occurring with a small probability.

@ How small? Depends on the context.

@ In many cases, these probabilities can be between 1078 and 1071°, or
even at lower values. Main example: critical systems, that is,

> systems where the rare event is a catastrophic failure with possible
human losses,

» or systems where the rare event is a catastrophic failure with possible
monetary losses.

@ In most of the above problems, the mathematical model is often too
complicated to be solved by analytic or numeic methods because

> the assumptions are not stringent enough,

» the mathematical dimension of the problem is too large,

> the state space is too large to get a result in reasonable time,
>

@ Simulation is, most of the time, the only tool at hand.
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Example: Highly Reliable Markovian Systems (HRMS)

9

9

System with ¢ types of
components. Y = (Yy,..., Ye)
with Y; number of up
components.

1: state with all components up.

Markov chain. Failure rates are
O(g), but not repair rates. Failure
propagations possible.

System down when in grey
state(s).

Goal: compute p(y) probability to
hit A before 1.

(1) important in dependability
analysis,

Small if € small.

B. Tuffin & G. Rubino (Inria)
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Example: connectivity within a graph

@ Static reliability problems (time is
not an explicit variable)

@ Communication network:

» nodes assumed to be perfect,

> links can fail independently.

> For each edge e, elementary
unreliability ge, reliability
fe=1— Qe.

» The network works iff two
specific nodes communicate.

@ Model: graph with M links

@ X =(Xi,...,Xm) (random)
configuration with X, = 1 if edge
e works, 0 otherwise.

© state of the system: ¢(X), where
¢(X) =1iff s and t not
connected.

B. Tuffin & G. Rubino (Inria)

o u=E[¢(X)] , computation
NP-hard problem in general.

@ wu small if individual unreliabilities
small and/or redundancy of paths.
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Monte Carlo

@ In all the above problems, the goal is to compute 1 = E[X] of some
random variable X.

@ Monte Carlo simulation (in its basic form) generates n independent
copies of X, (Xi, 1 <i<n),

o X, =(1/n)>_"_; X; approximation of p.
@ Almost sure convergence as n — oo (law of large numbers).

@ Accuracy: central limit theorem, yielding a confidence interval

—  Ca0 =  CaO
e X, — —, X —
8 < " n ”+ﬁ)

» «: desired confidence probability,

> o =11 — %) with ® is the cumulative Normal distribution
function of A/(0,1)

» 02 = Var[X] = E[X?] — (E[X])?, estimated by

Sr=(1/(n=1)) X7, X7 — (n/(n = 1))(X,)-
March 2012 0 /33



Inefficiency of crude Monte Carlo

@ Crude Monte Carlo: simulates the model directly

@ We compute the probability i = E[1a] << 1 of a rare event A.

@ X; Bernoulli r.v.: 1 if the event is hit and 0 otherwise.

o To get a single occurence, we need in average 1/u replications (10°
for ;1 = 1072), and more to get a confidence interval.

@ nX, Binomial with parameters (n, 1) and the confidence interval is

X _Ca\/N(l_ﬂ) X +Ca\/ﬂ(1_ﬂ)
n —\/ﬁ » An —\/ﬁ .

o Relative half width c,o/(v/nu) = car/(1 — p)/p/n — oo as p — 0.

o For a given relative error RE , the required value of
2
n=(c)

inversely proportional to u.

Two main families of techniques:
» Splitting
» Importance Sampling
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Robustness properties

@ In rare-event simulation models, we often parameterize with a rarity
parameter € > 0 such that © = E[X(e)] — 0 as ¢ — 0.

@ An estimator X(e) is said to have bounded relative variance (or
bounded relative error) if a®(X(€))/u?(¢) is bounded uniformly in e.

@ Interpretation: estimating p(e) with a given relative accuracy can be
achieved with a bounded number of replications even if ¢ — 0.

o Weaker property: asymptotic optimality (or logarithmic efficiency) if
lime—o In(E[X?(€)])/ In(u(e)) = 2.

@ Stronger property: vanishing relative variance: o2(X(e))/u?(e) — 0
as € — 0. Asymptotically, we get the zero-variance estimator.

@ Other robustness measures exist (based on higher degree moments,
on the Normal approximation, on simulation time...).
L'Ecuyer, Blanchet, T., Glynn, ACM ToMaCS 2010
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Importance Sampling (1S)

o Let X = h(Y) for some function h where Y obeys some probability

law P.
@ IS replaces P by another probability measure P, using

£ = [ h)d20) = [ iy Gehab(y) = Elpv)Ly)

» L = dP/dP likelihood ratio,

» [E is the expectation associated to probability law P.
@ Required condition: dP(y) # 0 when h(y)dP(y) # 0.
o If P and PP continuous laws, L ratio of density functions.

o If P and P are discrete laws, L ratio of indiv. prob.

1
® Unbiased estimator: — > h(YI)L(Y:) with (Y;, 1 < i < n)iid;
i=1

copies of Y, according to P.
o Goal: select probability law P such that

F2[h(Y)L(Y)] = E[(h(Y)L(Y))’] = p* < o?[h(Y)].
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IS difficulty: system with exponential failure time

@ Goal: to compute y that the system fails before T,
p=E[1a(Y)]=1—e?T.

@ Use for IS an exponential density with a different rate A

B T -Ay\2 . . 2(1 _ o= (2A=XT
B = [ (555 ) Rty = ),

X2x-3X)
@ Variance ratio for T =1 and A = 0.1:
variance ratio 52(14(Y)L(Y))/c?(14(Y))
2 —
1.5 4
1
0.5
O 1 1 1 1 1 1 3
T T T T T T T T A
A=0.11 2 3
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Optimal estimator for estimating E[h(Y)] = [ h(y)L(y)dP(y)

@ Optimal change of measure:

[A(Y)]

= BIAON]

dP.

@ Proof: for any alternative IS measure P/, leading to the likelihood
ratio L’ and expectation E/,

E[(h(YV)L(Y))?] = E[IA(Y)D? = E[A()IL' (V) < E'[(h(Y)L'(Y))]-

o Ifh>0, E[(h(Y)L(Y))2] = (E[h(Y)])?, i.e., 32(h(Y)L(Y)) = 0.
That is, IS provides a zero-variance estimator.

@ Implementing it requires knowing E[|h(Y')]], i.e. what we want to
compute; if so, no need to simulation!

@ But provides a hint on the general form of a “good” IS. measure.

B. Tuffin & G. Rubino (Inria) March 2012

15 / 33



IS for a discrete-time Markov chain (DTMC) {Y}, j > 0}

o X = h(Yo,...,Y:) function of the sample path with
» P =(P(y, z) transition matrix, mo(y) = P[Yo = y], initial probabilities
> up to a stopping time 7, first time it hits a set A.
> ply) = By [X].

@ IS replaces the probabilities of paths (yo,- - ., ¥n),

n—1

P[(Yo, .-, Y7) = (%0, ---,¥n)] = mo(¥0) H P(yj-1.%),

by P[(Yo,...,Ys) = (yo,---,yn)] st E[r] < c.
@ For convenience, the IS measure remains a DTMC, replacing P(y, z)
by P(y.z) and mo(y) by #o(y).

P(Y;
o Then L(Y,...,Y,) = 2 YO)H (11’
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Zero-variance IS estimator for Markov chains simulation

@ Restrict to an additive (positive) cost
T
X =) c(Yi1,Y))
j=1

@ Is there a Markov chain change of measure yielding zero-variance?

@ Yes we have zero variance with

= _ P(y,z)(c(y,z) + u(2))
POa) = PG wlelyw) + u(w))
P(y,z)(c(y,z) + u(2))
u(y)

@ Without the additivity assumption the probabilities for the next state
must depend in general of the entire history of the chain.
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Zero-variance for Markov chains

@ Proof by induction on the value taken by 7, using the fact that
1(Yz) = 0 In that case, if X denotes the IS estimator,

. T TP(Yi_1, Y
X = ZC(YFl, K)H%
i=1 j=1 (Yi-1,Y))

T i

PO 1, Yi)u(Y;1)
= 2 Y")E P(Yi-1, Yi)(e(Yj1, ¥)) + 1(Y)))

T i

) . p(Yj-1)
= 2 eI vy

i=1 j=1
= u(Yo)

@ Unique Markov chain implementation of the zero-variance estimator.

@ Again, implementing it requires knowing p(y) Vy, the quantities we
wish to compute.

@ Approximation to be used.
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Zero-variance approximation

@ Use a heuristic approximation fi(-) and plug it into the zero-variance
change of measure instead of yu(-).

@ More efficient but also more requiring technique: learn adaptively
function p(-), and still plug the approximation into the zero-variance
change of measure formula instead of p(-).

» Adaptive Monte Carlo (AMC) proceeds iteratively.
* Considers several steps and n; independent simulation replications at
step .
* At step i, replaces u(x) by a guess 1(7(x)
Pyz(cyz + .u(i)(z))
> Prw(cyw + 0 (w))”
* Gives a new estimation p(*1(y) of u(y), from which a new transition
matrix P is defined.
» Adaptive stochastic approximation (ASA) updates the probabilities at
each step of the simulation.
» But those methods require to store a lot of information for large
systems.
@ Other methods, based on subsolutions of Isaac equations (P. Dupuis et

al.) or the construction of Lyapounov functions (Blanchet, Glynn et al.).
March 2012 19 / 33
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lllustration of heuristics: birth-death process

o Let P(i,i+1)=pand P(i,i—1)=1—pfor1 <i< B -1, and
P(0,1)=P(B,B-1)=1.

@ We want to compute p(1), probability of reaching B before coming
back to 0.

o If p small, to approach p(-), we can use

ply)=p" Vye{l,...,B-1}

with /1(0) = 0 and fi(B) = 1 based on the asymptotic estimate
p(i) = pB~" + o(pB).

@ We can verify that the variance of this estimator is going to 0 (for
fixed sample size) as p — 0.
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Highly Reliable Markovian Systems (HRMS)

@ System with ¢ types of components. Y = (Y1,..., Y) with Y;
number of up components.

o 1: state with all components up.

o Failure rates are O(e), but not repair rates. Failure propagations
possible.

@ System down (in A) when some combinations of components are
down.

o Goal: compute p(1) with u(y) probability to hit A before 1.

@ Simulation using the embedded DTMC. Failure probabilities are O(¢)
(except from 1). How to improve (accelerate) this?

@ Existing method: Vy # 1, increase the probability of the set of
failures to constant 0.5 < g < 0.9 and use individual probabilities
proportional to the original ones (SFB), or uniformly (BFB).

@ Failures not rare anymore. BRE property verified for BFB.
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HRMS Example, and IS

Figure: Original probabilities Figure: Probabilities under I1S/BFB
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HRMS, Zero-variance IS L'Ecuyer & T., ANOR, to appear

@ Complicates the previous model due to the multidimensional
description of a state.

@ The idea is to approach p(y) by the probability of the path from y to
A with the largest probability

@ Intuition: as € — 0, we get a good idea of the probability.

Proposition

Bounded Relative Error proved (as ¢ — 0) in general.

Even Vanishing Relative Error if ji(y) contains all the paths with the
smallest degree in .

@ Other simple version: approach p(y) by the (sum of) probability of
paths from y with only failure components of a given type.

@ Gain of several orders of magnitudes + stability of the results with
respect to the literature.
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HRMS: numerical illustrations

@ Comparison of BFB and Zero-Variance Approximation (ZVA).
@ ¢ = 3 types of components, n; of type i
@ M =¢ =15 and \3 =22 p=1

@ System is down whenever fewer than two components of any one type are

operational.
n; € 1o BFB est ZVA est BFB o2 ZVA o2
3 0.001 | 26x10°3 | 27x10°3 26x1073 | 6.2x 1075 22x10°8
6 0.01 | 1.8x10~7 | 1.9 x 1077 1.8x10~7 | 6.3x10° 1 2.0 x 10714
6 0.001 | 1.7x10711 | 1.8 x 10711 1.7x 1071 | 8.8x 10~ 1 1.2x 1073
12 0.1 | 6.0 x 1078 4.8 x10°8 6.0 x 108 8.1 x 10~10 1.6 x 1010
12 0.001 | 3.9x107% | (1.8 x107%%) 3.9x1072 | (32x1077%) 1.4x107%
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Graph model

@ M links can fail independently, elementary unreliability ge = 1 — r. for edge
e.

@ What is the probability that the set K of (grey) nodes is connected (in the
underlying random partial graph of G)?

@ X =(Xi,...,Xm) (random) configuration with X, = 1 if edge e works, 0
otherwise.

® state of the system: ¢(X), where ¢(X) = 1 iff K not connected.

0 u=E[p(X)] = X eqoym o()PIX = x].
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Graph model

@ M links can fail independently, elementary unreliability ge = 1 — r. for edge
e.

@ What is the probability that the set K of (grey) nodes is connected (in the
underlying random partial graph of G)?

@ X =(Xi,...,Xm) (random) configuration with X, = 1 if edge e works, 0
otherwise.

® state of the system: ¢(X), where ¢(X) = 1 iff K not connected.

0 u=E[p(X)] = X eqoym o()PIX = x].

@ We have to sum over the 2M configurations.

B. Tuffin & G. Rubino (Inria) March 2012 27 / 33



/Zero-variance est. L'Ecuyer, Rubino, Saggadi & T., IEEE Trans. Rel. 2011

@ ldea: sample the links one after the other, with an IS probability that
depends on the state of previously sampled links.

o Let um(x1, -+ ,xm—1), with x; € {0,1}, be the unreliability of the
graph G given the states of the links 1 to m —1: if x; = 1 the link i is
operational, otherwise it is failed.

o Then u= uy().

@ Sample state of link m, giving 1 with probability:

. (Xl e x 1): rmum+1(X17“' 7Xm7171)
mem FmUmt1 (X1, s Xm—1,1) + (1 = rm)ums1(x1, - -+, Xm—1,0)
@ Remark (by conditionning) that
Um(X1, -+ Xm—1) = fmUmy1(X1, -+ s Xm—1,1) + (1 — rm)rmtmy1(x1, - , Xm—1,0).
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Zero-variance estimation and approximation

Proposition
Using this IS, the estimator has zero variance (always yields u). J

@ Problem: the up,(-) are not known, otherwise no need to simulate.
@ Principle: approach up,(-) by some iipy,(-) and use

rmﬁm+1(X1; sty Xm—1, 1)
rmam+1(xly o, Xm—1, 1) + (1 - rm)am+1(xly e 7Xm—1,0) ’

r'/n(xl7 ‘e 7Xm—1) =
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Approximation of the zero-variance estimator

@ Our proposal: i, (x1, -+ ,xm—1) is the probability of a mincut of the

graph with highest probability, given the state of links 1 to m — 1.

> A cut (or K-cut) is a set of edges such that, if we remove them, the

nodes in K are not in the same connected component.

> A mincut (minimal cut) is a cut that contains no other cut than itself.

@ Intuition: the unreliability is the probability of union of all cuts, the

most crucial one(s) being the mincut(s) with highest probability.

@ Cuts can be obtained in polynomial time.

@ In a given state (x1,- -+, Xm—1), we need to determine
flm+1(X1, oy Xm—1, 1) and ﬁm+1(X1, oy Xm—1, 0)

@ This adds some computational burden, but should substantially
reduce the variance.

Proposition

Bounded relative error proved in general,
Vanishing relative error under identified conditions.
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Ex: dodecahedron topology, all links with unreliability e

€ Estimation Confidence interval Std deviation | Relative error
10~T | 2.8960 10—3 | (2.8276 10~3,2.9645 10~3) 3.4910°3 1.2
1072 | 2.0678 1076 | (2.0611 1075,2.0744 1079) 3.42 1077 0.17
1073 | 2.0076 10—° | (2.0053 10~°,2.0099 10~?) 1.14 10710 0.057
10~% | 2.0007%2 (2.0000 10~12,2.0014 10—%?) | 3.46 10~ 0.017
With respect to crude MC, a computational time increase of 16.
B. Tuffin & G. Rubino (Inria) March 2012
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Larger networks: 3 dodecahedrons in parallel

dodec. 2

dodec. 1

dodec. 3

€ Estimate 95% confidence interval std dev. Relative Error
10~1 2.3573 x 10~8 (2.2496 x 108, 2.4650 x 10~8) 5.49 x 1078 2.3
5x 1072 | 2.5732 x 10~ | (2.5138 x 10—, 2.6327 x 10~ 11) | 3.03 x 10~ | 1.2
102 8.7655 x 10718 | (8.7145 x 108, 8.8165 x 10~ 18) | 2.60 x 1078 | 0.30

@ Vanishing relative error observed
@ For 3 dodecahedron in series, Bounded relative error observed
@ Works very well for such topologies with close to 100 links, and larger.
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Conclusions: book advertisements
Released in March 2009 (John Wiley & Sons):

La simulation
de Monte Carlo
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