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Abstract

We introduce a new approach to compute common intervals of K permutations based on
a very simple and general notion of generators of common intervals. This formalism leads to
simple and efficient algorithms to compute the set of all common intervals of K permutations,
that can contain a quadratic number of intervals, as well as a linear space basis of this set
of common intervals. Finally, we show how our results on permutations can be used for
computing the modular decomposition of graphs in linear time.

1 Introduction

The notion of common interval was introduced in [18] in order to model the fact that, when
comparing genomes, a group of genes can be rearranged but still remain connected. In [18], Uno
and Yagiura proposed a first algorithm that computes the set of common intervals of a permutation
P with the identity permutation in time O(n+ N), where n is the length of P, and N is the number
of common intervals. However, N can be of size O(n?), thus the algorithm of Uno and Yagiura
has an O(n?) time complexity. Heber and Stoye [12] defined a subset of size O(n) of the common
intervals of K permutations, called irreducible intervals, that forms a basis of the set of all common
intervals: every common interval is a chain overlapping irreducible intervals. They proposed an
O(Kn) time algorithm to compute the set of irreducible intervals of K permutations, based on
Uno and Yagiura’s algorithm.

One of the drawbacks of these algorithms is that properties of Uno and Yagiura’s algorithm
are difficult to understand [4]. Even the authors describe their O(n + N) algorithm as "quite
complicated”, and, in practice, simpler O(n?) algorithms run faster on randomly generated per-
mutations [18]. On the other hand, Heber and Stoye’s algorithms rely on a complex data structure
that mimics what is known, in the theory of modular decomposition of graphs, as the PQ-trees of
strong intervals. An incentive to revisit this problem is the central role that these PQ-trees seem
to play in the field of comparative genomics. Strong intervals can be used to identify significant
groups of genes that are conserved between genomes [13], or as guides to reconstruct evolution
scenarios [1, 10].

In order to design alternative efficient algorithms to compute common intervals, we propose
a theoretical framework for common intervals based on generating families of intervals. For two
permutations, these families can be computed by straightforward O(n) algorithms that use only
tables and stacks as data structures, and that upgrade trivially to the case of K permutations.
Using these families, we compute common intervals with simple O(n + N) and O(n) algorithms
whose properties can be readily verified. We also propose a new canonical representation of the
family of common intervals that is simpler than the PQ-trees. We then link this work to previous
studies on common intervals and show how our new representation can be transformed in linear
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time into classical ones, namely PQ-trees, and irreducible intervals. Conservely, generating families
can be linearly built from these representations.

Finally, we extend our approach to the classical graph problem of modular decomposition that
aims to efficiently compute a compact representation of the modules of a graph. The first linear
time algorithms that were developed [8, 15] are rather complex and many efforts were have been
made in the design of decomposition algorithms that are efficient in practice, even if they do not
run in linear time but in quasi-linear time [9, 16].

The article is structured as follows. In Section 2, we describe the notion of generators of
common intervals and how to compute generators of K permutations of size n in O(Kn) time.
The third section explains how to generate the set of all N common intervals in O(n + N) using a
generator. Section 4 describes a new linear space basis of common intervals, called the canonical
generator. Section 5 links this new representation to classical ones, namely strongs intervals,
irreducible intervals and PQ-trees. Finally, in Section 6, we extend our results to the modular
decomposition of graphs. An extended abstract of this article appeared in [2].

2 Common intervals and generators

A permutation P on n elements is a complete linear order on the set of integers {1,2,...,n}. We
denote Id,, the identity permutation (1,2, ...,n). An interval of a permutation P = (p1,pa2,...,Pn)
is a set of consecutive elements of permutation P. An interval of a permutation will be denoted
by either giving the indices of its left and right bounds (i..j).

Definition 1 Let P = {P;, P,,..., Pk} be a set of K permutations on n elements. A common
interval of P is a set of integers that is an interval in each permutation of P.

The set {1,2,...,n} and all singletons are always common intervals of any non empty set of
permutations, they are called trivial intervals. In the sequel, we assume, without loss of generality,
that the set P contains the identity permutation Id,,. A common interval of P can thus be denoted
as an interval (i..7) of the identity permutation.

Definition 2 Let P = {Id,,, P, ..., Pk} be a set of K permutations on n elements. A generator
for the common intervals of P is a pair (R, L) of vectors of size n such that:

1. R[i] > i and L[j] < j for alli,j € {1,2,...,n},

2. (i..7) is a common interval of P if and only if (i..7) = (i..R[i]) N (L[j]..5)-

The following proposition shows how to construct a generator for a union of sets of permutations,
given generators for each set. If X and Y are two vectors, we denote by min(X,Y") the vector
min(X[1],Y[1]),...,min(X[n],Y[n]).

Proposition 1 Let (Ry,L1) and (R, La) be generators for the common intervals of two sets Py
and Py of permutations, both containing the identity permutation. The pair (min(R;, Ry), max(L1, Ls))
is a generator for the common intervals of P1 U Ps.

Proof. First note that (i..j) = (i..R[i]) N (L[j]..7) if and only if L[j] < i < j < R[i]. Interval
(i..7) is a common interval of Py U Py if and only if it is a common interval of both P; and
P2, which is equivalent to Li[j] < i < j < Ry[i] and Lo[j] < ¢ < j < Ryli], and finally to
max(La[j], L2[j]) < i < j < min(Ry[i], Rai]) O

Proposition 1 implies that, given an O(n) algorithm for computing generators for the common
intervals of two permutations, we can easily deduce an O(Kn) algorithm for computing a generator
for the common intervals of K permutations. Generators are far from unique, but some are easier
to compute than others. Identifying good generators is a crucial step in the design of efficient
algorithms to compute common intervals. The remaining of this section focuses on particular
classes of generators that turn out to have interesting properties with respect to computations.



Definition 3 Let P = (p1,...,p,) be a permutation on n elements. For each element p;, we
define two intervals containing p;:

IMaz|p;] is the largest interval of P whose elements are all > p;,

IMin[p;] is the largest interval of P whose elements are all < p;.
And the following two integers:

Sup[p;] is the largest integer such that (p;..Sup[p;]) C IMax[p],

Inf[p;] is the smallest integer such that (Inf[p;]..p;) C IMin[p;].

Remark that (p;..Sup[p;]) and (Inf[p;]..p;) are intervals of the identity permutation, but not
necessarily intervals of permutation P. For example, if P = (1 4 75 9 6 2 3 8), we have:
IMax[5] = (7596) and Sup[5] =7, and IMin[8] = (6 2 3 8) and Inf[8] = 8.

Proposition 2 The pair of vectors (Sup, Inf) is a generator for the common intervals of P and
1d,.

Proof. Suppose that (i..j) is a common interval of P and Id,,, then Sup[i] > j and Inf[j] < i since
all elements in the set (4..j) are consecutive in permutation P. Thus (i..7) = (i..Sup[i))N(Inf[j]..5).
On the other hand, suppose that Sup[i] > j and Inf[j] < 4, then I Maz[i] contains j and I Min[j]
contains 4. Since both IMax[i] and IMin[j] are intervals of P, their intersection is an interval
and is equal to (¢..5). O

Example Let P = {Ids, P} and Q = {Idg, P3} with
IdS = (1,2,374,5,6, 778) P2 = (1a37274a57 75678) P3 = (2587374a5767177)

The generators (Sup, Inf) for the common intervals of P and Q are shown on Figure 1. This
figure also shows a generator for P U Q.
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Figure 1: The top two diagrams show the generators (Sup, Inf) of the common intervals of the
set P in solid lines, and of set Q in dashed lines. A line in row ¢ of the left diagram extends from
column ¢ to column Sup(i), and a line in row ¢ of the right diagram extends from column Inf(i) to
column i. The bottom diagrams shows a generator for the common intervals of P U Q constructed
using Proposition 1.



Algorithm 1: Computing the generator (Sup, Inf).

Inf[l] « 1, Sup[n] < n.
For k from 1 to n, mlk] < k, M[k] — k.
For k from 2 ton

While m[k] — 1 is in IMinlk], m[k] < m[m[k] — 1]

Inflk] — m[k]
For k fromn —1to 1

While M[k] 4+ 1 is in IMaxz[k], M[k] — M[MI[k] + 1]

Suplk] — MIFk]

Proposition 3 Let P be a permutation on n elements. If the bounds of intervals IMax[k] and
IMinlk] are known for all k, then Algorithm 1 computes (Sup, Inf) in O(n) time.

Proof. We first show that Algorithm 1 is correct. Suppose that, at the beginning of the k-th
iteration of the second For loop, Inf[k'] = m[k'] for all k' < k, and m[k] € IMin[k]. This is the
case at the beginning of iteration k = 2, since Inf[1] = 1. By definition, Inf[k] < k, thus before
entering the While loop, we have Inf[k] < m[k]. If the test m[k]—1 € IMin[k] of the While loop is
true, then Inf[k] < m[k] — 1, implying Inf[k] < Inf[m[k] —1]. Since Inf[m[k] — 1] = m[m[k] — 1]
by hypothesis, the instruction in the While loop preserves the invariant Inf[k] < m[k]. When the
test of the While loop becomes false, then Inf[k] is greater than m[k] — 1, thus Inf[k] = mlk].
The proof of correctness for Sup is similar.

Suppose that IMinlk] = [i, j], then the tests in the While loops can be done in constant time
using the inverse of permutation P. The total time complexity follows from the fact that the
instruction within the While loop is executed exactly n — 1 times. Indeed, consider, at any point
of the execution of the algorithm, the collection of intervals (m[k]..k) of the identity permutation
that are not contained in any other interval of this type. After the initialization loop, we have
n such intervals, and at the completion of the algorithm, there is only one, namely (1..n), since
Inf[n] = 1. The instruction in the While loop merges two consecutive intervals into one and there
can be at most n — 1 of these merges. O

The computation of the bounds of intervals IMax[k] and IMinlk], as well as the computation of
the inverse of permutation P, are quite straightforward. As an example, Algorithm 2 shows how
to compute the left bound of I Max|p;].

Proposition 4 Let P = (p1,...,pn) be a permutation on n elements, Algorithm 2 computes the
left bound of all intervals IMax[p;] in O(n) time.

Proof. The time complexity of Algorithm 2 is immediate since each position is stacked once. The
correctness of LM ax relies on the fact that, at the beginning of the i-th iteration, the position j
of the nearest left element such that p; < p; must be in the stack. If it was not the case, then an
element smaller than p; was found between the positions j and ¢, contradicting the definition of
position 5 O

Algorithm 2: Computing the left bound LM ax[p;] of IMax[p;] for all p;

S is a stack of positions; s denotes the top of S.
Push O on S
po < 0
For i from 1 ton

While p; < ps Pop the top of S

LMax[p;] « s+1

Push i on S

To summarize the results of this section, we have:

Theorem 1 Let P = {Id,, Ps,...,Px} be a set of K permutations on n elements. A generator
for the common intervals of P can be computed in O(Kn) time.



3 Common intervals of K permutations in optimal time

We now turn to the problem of generating all common intervals of K permutations in O(N)
time, where NN is the number of such common intervals, given a generator satisfying the following

property.

Definition 4 Two sets A and B commute if either A C B, or B C A, or A and B are disjoint,
and otherwise they overlap. A collection C of sets is commuting if, for any pair of sets A and B in
C, A and B commute. A generator (R, L) for the common intervals of P = {Id,,, Ps,..., Pk} is
commuting if both the collections {(i..R[i]) }ie(1..n) and {(L[i]..7) }ie(1..n) are commuting. If (R, L)
is a commuting generator, we define Support[i], for ¢ > 1, to be the greatest integer j < 4 such
that R[] < R[j].

It turns out that generators defined in Section 2 are commuting. Indeed, generators defined in
Proposition 1 are commuting if they are constructed with generators (Ry, L1) and (Ra, L) that are
commuting. This is a consequence of the fact that if @ < b and a’ < b’ then min(a,a’) < min(b, )
and max(b,b’) > max(a,a’). For the generator (Sup, Inf), we have:

Proposition 5 The generator (Sup,Inf) for the common intervals of permutations P and Id,
18 commuting.

Proof. Suppose that (k..Sup[k]) contains &', we will show that it must also contain Sup[k’]. If
k' is in (k..Suplk]), then k' is in IMaz[k], and k' > k, therefore, IMazx[k'] C IMax[k], and the
interval (K'..Sup[k']) is included in ITMax[k], thus in (k..Sup[k']) also. Since Sup[k] is maximal,
we must have Sup[k] > Sup[k']. A similar argument holds for Inf. O

Proposition 6 Given a commuting generator (R, L), Algorithm 3 computes the values Support|i],
for alli > 1, in linear time.

Proof. The time complexity of Algorithm 3 is immediate. At iteration i the stack contains the left
bounds of all intervals of (j..R[j]) such that R[j] > i and j < i, sorted in decreasing size order.
It is then easy to see when equality holds. Note that Support[l] is undefined and should not be
used by subsequent algorithms. O

Theorem 2 Given a commuting generator (R, L), Algorithm 4 outputs all common intervals of
a set P of K permutations on n elements, in O(n+ N) time, where N is the number of common
intervals of the set P.

Proof. The time complexity of Algorithm 4 is immediate. Suppose that interval (i..5) is identified
by the algorithm. At the start of the j-th iteration of the For loop, i = j, thus j < R[i]. If the
test of the While loop is true, then ¢ > L[j], and (i..j) is a common interval. If i/ = Support]i],
then R[i'] > RJ[i], thus j < R[] at the end of the While loop.

On the other hand, if (i..j) is a common interval of P, with ¢ < j, then Support[j] > i,
since R[i] > R[j]. Let i’ be the smallest integer such that ¢ < i’ and (¢'..5) is identified by
Algorithm 4 as a common interval. Such an interval exists, since (j..j) is a common interval.
Finally, Support[i'] = i since Support[i’]| must be greater than or equal to i. If it is greater, then
(Support[i']..j) is a common interval, contradicting the definition of ¢'. O

Algorithm 3: Computing Support[i] for a commuting generator (R, L)

S is an empty stack; s denotes the top of S
Push1on S
For i from 2 ton
While R[s] < i Pop the top of S
Supportli] « s
Push i on S




Algorithm 4: Common intervals of a set P given a generator (R, L)

For j from n to 1
17
While i > L|j]
Output (i..7) (* Interval (i..j) is a common interval of the set P *)
1 «— Support][i]

4 A new canonical representation of closed families

The common intervals of a set of permutations is an example of a more general families of intervals,
the closed families. In this section, we develop a new canonical representation for such families,
based on the generators of the previous section.

A closed family F of intervals of a permutation o on n elements is a family that contains all
singletons, the interval (1..n) and that has the following property: if (i..k) and (j..l) are in F, and
i <j<k<lI, then (i..j), (j..k), (k..I) and (i..l) belong to F. It is easy to extend Definition 2 of
generators to the more general case of closed families.

A classical result [3] establishes a bijection between the PQ-trees with n leaves and closed
families of Id,, thus allowing a representation of size O(n) for any closed family. Among all
possible generators, the following ones will also provide a representation of size O(n) for any
closed family:

Definition 5 A generator (R, L) for a closed family F is canonical if, for alli € (1..n), intervals
(i..R[3]) and (L[i]..i) belong to F.

Proposition 7 Let F be a closed family. The canonical generator of F always exists, and it is
unique and commuting.

Proof. Let F be a closed family. For 1 < i < n, define RJ[i] be the largest integer such that
(i..R[i]) € F, and L[i] be the smallest integer such that (L[i]..i) € F.

If an interval (i..5) € F, then (i..5) C (i..R[i]), and (i..5) C (L[j]..j), thus (R, L) is a generator.
It is canonical since we picked elements of F. Suppose that there exists a second canonical
generator (R, L'), with R # R/, then there exists 1 < i < n such that R'[{] < R][i]. Since (i..R[i])
is in F, it should be generated by (R’, L’) but (i..R'[i]) N (L'[R[i]], R[¢]) does not contain R[i]. A
similar argument holds if L # L’. Finally, suppose that two intervals (.. R[4]) and (j..R][j]) overlap
with ¢ < j < R[i] < R[j]. Then (i..R[j]) is in F which contradicts the maximality of (i..R[i]). O

Theorem 3 Given a commuting generator (R', L"), Algorithm 5 computes the canonical generator
(R, L) of a closed family F in O(n) time.

Proof. The time complexity of Algorithm 5 follows from the fact that testing if an interval belongs
to F can be computed in O(1) time with the generator (R’,L’). Tts correctness relies on the
following observation: if R[k] # k, then there exists an integer k' > k such that

Support[k'] =k, and R[k'] = R[k] (1)

where Support[k'] is defined (Definition 4) as the greatest integer smaller than &’ such that
R'[Support[k']] > R'[k']. Statement (1) implies that, since the values of R[k] are computed in
decreasing order, the value of R[k] will be known at the start of iteration k.

In order to prove statement (1), let k' be the smallest integer such that R[k'] = R[k]. The
hypothesis R[k] # k, and the fact that (R, L) is a commuting generator, imply that k' > k.
We must show that Support[k’] = k. Since (R',L’) is a commuting generator, and (R, L) is
the canonical generator, we must have R'[k] > R'[k']. Thus, Support[k’] > k, implying that
R[Support[k']] < R[k]. Since R[k] = R[K'], this would imply R[Support[k']] = R[k], contradicting
the definition of k'. O



Algorithm 5: Canonical generator (R, L) given a commuting generator (R’, L")

The vector Support is obtained from R' using Algorithm 3
R[] «n
For k from 2 ton

R[k] — k
For k from n to 2

If (Supportlk]..R[k]) € F

R[Support[k]] < max(R[k], R[Support[k]])

(* Computation of L is similar, by defining the vector Support with respect to L' *)

Example (continued) Let P = {Ids, P>} and Q = {Idg, P3} with
Ids = (1,2,3,4,5,6,7,8) Py = (1,3,2,4,5,7,6,8) P; = (2,8,3,4,5,6,1,7)
Two generators for the set P U Q are shown on Figure 2. The second one is canonical.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
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Figure 2: The top two diagrams show a generator for the common intervals of PUQ constructed us-
ing Proposition 1 (see Figure 1). The bottom diagrams shows the canonical generator constructed
by Algorithm 5

5 Computing a canonical representation from another one

Compared to PQ-trees, the canonical generator of a closed family F is much simpler since it uses
only two arrays. Moreover, some operations, for example testing whether an interval (i..j) belongs
to the family F, are also simpler using this representation. However, PQ-trees have the advantage
of being recursive structures. Another canonical representation, the family of irreducible intervals
was introduced by [12].

The links between PQ-trees and irreducible intervals have been studied in [13] that presents
linear-time algorithms for the conversion.

In order to be complete, we next show how to transform the canonical generator into PQ-tree
and vice versa.



5.1 From canonical generators to strong intervals and PQ-trees

The key notion we use is the strong common intervals. A strong interval of F is an interval that
commutes with each interval of F. In this section, we show how to compute the strong intervals,
given a canonical generator. The structure of PQ-tree, the inclusion tree of the strong intervals,
is another classical representation of an interval family [3]. This concept is investigated in [14].

Lemma 1 Let (R, L) be the canonical generator. We have:
(1) If (i..R[i]) overlaps (L[j]..7) and (L[j']..') then L[j] = L[j'].
(2) If (L[j]..7) overlaps (i..R][i]) and (i'..R[i']) then R[i] = R[i].

Proof.

(1) Let us suppose L[j] # L[j'] and w.l.o.g. L[j] < L[j']. Then j > j’ as L is commuting. As
(R,L) is a generator L[j] < ¢ (because L[j] > i would contradict the minimality of L[j]). Thus
we have L[j] < L[j'] < i < j' < j < R[i]. Interval (L[j]..i — 1) is common since it is (L[j]..5)
minus (¢..R[i]). Thus (L[j]..;") is also common since it is the union of overlapping (L[j]..¢ — 1) and
(L[j']--7"). This contradicts the minimality of L[j’].

(2) The proof is similar to Point 1 proof. O

Let us consider the canonical generator (R, L). The transitive closure of the overlap relation
on RUL is a equivalence and its equivalence classes are henceforth called overlap classes. A trivial
overlap class only contains a single interval (i..R[i]) or (L[j]..5). This interval is obviously strong.
The following lemma 2 deals with non trivial classes.

Lemma 2 Let C be a non trivial overlap class containing (i1..R[i1]), ... (ix..R[ix]) and (L[j1]--71), ---
(L[j1).-51)- Let us suppose wlog iy < ... <y and j1 < ... < ji. Then:

(3) For all a,b € (1..k) R[i,] = Rlip).

(4) For all a,b € (1..1) L[j,] = L[js]. We will henceforth denote L[C] and R|C] these common
bounds.

(5) k=1
(6) (LIC]..ja) overlaps (ip..R[ip]) iff a > b.
(7) For alla € (1..k —1) ig11 = ja + 1.

(8) (L[C]..RIC]) is a strong common interval and for all a € (1..k) (i4..Ja) 1S a strong common
interval.

Proof.
(3) Direct consequence of Point 2 of Lemma 1.
(4) Direct consequence of Point 1 of Lemma 1.

(5) Let us suppose k < [ (there is a similar proof if we suppose k > [). Let f be the function
(1..1) — (1..k) such that f(a) is the largest b such that (L[C]..j,) overlaps (ip..R[C]). As
k < [ there must exist z,y and z such that f(z) = f(y) = z. Let us suppose wlog j, < jy.
Interval (j, + 1..R[C]) is common, since it is the difference (i,..R[C]) minus (L[C]..j,), and
overlaps (L[C]..j,). Furthermore R[j, + 1] = R[C] since a larger R[j, + 1] would contradict
maximality of R[i,] = R[C]. (j. + 1..R[j; + 1]) is hence in the overlap class C and that
contradicts f(y) = z.

(6) We have indeed proved that f is a bijection. As i1 < ... < i, and j; < ... < j;, f is an
increasing function and thus for all @ € (1..k) f(a) = a. Point 6 directly derives.



(7) For all a € (i..k — 1) (L[C]..ja) overlaps (i,..R[C]) but not (iq+1..R[C]) which is overlapped
by (L[C]..ja+1). (ja + 1..R[C]) is a common interval (it is (i4..R[C]) minus (L[C]..j,)). We
have R[j, + 1] = R|[C] (a larger R[j, + 1] would contradict maximality of R[i,] = R[C]) and
(jo+1..R[C]) € C (it overlaps (L[C..jo+1)). As said in proof of Point 5 f(is4+1) = jot+1 hence
iaJrl =Ja+ 1L

(8) As (L[C]..R]C]) is the union of overlapping common intervals (L[j1]..j1) and (i1..R[¢1]) it is a
common interval. As (i4..j,) is the intersection of overlapping common intervals (L[j,].-ja)
and (i4..R[ig]) it is also a common interval.

Let us suppose an interval (i..j) overlaps (L[C]..R[C]) and wlog i < (L[C] < j < R[C]. We
have L[j] < i < L|C] and (L[j]..j) overlaps (¢1..R[i1] = R|C]) in violation of Point 1 of
Lemma 1, contradiction.

Let us suppose an interval (i..7) overlaps (iq..Jq) Wlog i < iq < j < jq. (¢..R[C]) is a common
interval (union of (i..j) and (i,..R[C])) of C (it overlaps (L[C]..j,)) not repertoried in C since
i ¢ {41..ix}, a contradiction.

O

Note that if an overlap class C is not trivial then (L[C]..R[C]) is not an interval of (R, L). These
intervals however form a commuting family since:

Lemma 3 Let C and C' be two overlap classes of G(R, L) then:
(9) (L[C]..R[C]) and (L[C’]..R[C']) commute.

Proof. If C is a trivial class let I = J be the single member of this class. Else let I and J be
two overlapping intervals. According to Point 3 and 4 of Lemma 2 L[C] is the left bound of one
of them (wlog say I) and RIC] is the right bound of the other (J). Let I’ be an interval of C’.
Either I € I’ and J C I’ and so (L[C]..R[C]) C (L[C']..R[C']) ; or I" C I and I’ C J and so
(L[C']..R[C']) C (LIC])..R[C]) ;or INI"=( and JNI' = and so (L[C]..R[C]) N (L[|C']..R[C']) = 0.
O

Lemma 4 Let S be a strong interval of F. There exists an overlap class C such that either
S = (L[C]..R[C]) or C contains k intervals of R (i1..R[i1]),... (ig.-R[ix]) and k intervals of L
(L[j1]--41)5 - (L[jk)--Jx) and there exists a € (1..k) such that S = (iq-.Ja)-

Proof. Let S = (i..j) be a strong interval. If R[i{] = j then S € R and S form a trivial overlap
class. Same situation if L[j] = i. Otherwise (i..R[i]) and (L[j]..j) overlap and thus belong to an
overlap class C. Using the same notations as above we have i = i, and j = j; for some a and b. If
a > b then according to Point 6 of Lemma 2 (L|[C]..j) does not overlap (i4..R[is]). If a < b, S is
overlapped by (ip..R[C]) and thus is not strong. Therefore a = b. O

Let (R, L) be the canonical generator. Consider the 4n bounds of intervals of the families
(i..R[i]) and (L[j]..j) for i,5 € (1.n). Let (ai,...,as,) be the list of these 4n bounds sorted in
increasing order, with the left bounds placed before the right bounds when they are equal. For
the example of Figure 2 this list is

where 7 denotes a right bound. Such a list can be constructed easily by scanning the two vectors
R and L, and by noting that each i € (1..n) is a left bound at least once, and a right bound at
least once.

Algorithm 6: Computation of the strong intervals



S is a stack of bounds, s denotes the top of S
For i from 1 to 4n
If a; is a left bound
Push a; on S
Else
Output (s..a;) (* Interval (s..a;) is strong *)
Pop the top of S

Proposition 8 Given the ordered list (ay,...,asn) of the 4n bounds of a canonical generator
(R, L), Algorithm 6 outputs the strong intervals of a closed family in O(n) time.

Proof. The O(n) time complexity is obvious. Let us prove its correction.

1. We shall prove that every interval output by Algorithm 6 is strong. According to Lemma 3,
the overlap component commute. At any step the top of the stack contains the left bounds of an
overlap class C and the rest of the stack contains the left bounds of the overlap class containing
C, ordered by the inclusion.

According to Point 5 of Lemma 2 each overlap class contains as many intervals (L[ja]..jq) as
intervals (4y..R[ip]). So the algorithm outputs only intervals whose bounds belong to the same
overlap class.

If the overlap class only contains a strong interval, clearly this interval and only it is output.
Assume now that this class is non trivial. We show now that these intervals are exactly those
described in Point 8 of Lemma 2. We just have to notice that there are k pushes of L[C], then one
of i1; then for each a € (1..k — 1) we repeat a pop after j, outputing (is..j,) followed by a push of
iq+1. Finally there a pop after j, outputing (ix..jr), then k pops after R[C] outputing (L[C]..R[C])
k times. The algorithm outputs therefore only strong intervals.

2. Conversely, according to Lemma 4 every strong interval is as described by Point 8 of Lemma
2, so is output. O

Note that, since 2n intervals are identified by Algorithm 6, and the number of strong intervals
is between n + 1 and 2n — 1, some of them may be output several times.

5.2 From strong intervals and generator to P(Q-tree

Let T be a tree whose n leaves are labelled with n different labels. The frontier of a node is the
set of labels of the leaves of the subtree rooted at this node.

A proper commuting family F C 2V is a commuting family such that V € F, Vv € V {v} € F
and () ¢ F. The strong common intervals of K permutations obviously form a proper commuting
family.

A proper commuting family F can be represented by its inclusion tree in which the frontiers
of the nodes are in bijection with the members of the family. Clearly its root is V' and its leaves
are the singletons of F. Conversely the frontiers of a tree with V as leaf labels define a proper
commuting family.

Given a proper commuting family of n < m < 2n intervals, the following folklore algorithm
computes the inclusion tree in O(n) time.

Algorithm 7: Building the inclusion tree of a proper commuting family F

10



Bucket-sort in decreasing order the intervals of F according to their right bound
Bucket-sort in increasing order the intervals of F according to their first bound
Let I..1,,, be the list of sorted intervals
F— 1, (*I, =V is the root *)
k2
While k <m
Ifl, CF
Parent(I) «— F
F — Ik
k—k+1
else
F — Parent(F)

Notice that the bucket sort is a stable linear-time sorting algorithm, thus intervals with the same
left bound are sorted according to their right bounds. The overall time complexity is obviously
O(n).

The inclusion trees on V are in bijection with the proper commuting families. Similarly the
closed families are in bijection with a family of tree, called PQ-tree, that can store them in O(n)
size.

Proper commuting family <= inclusion tree

1 !
Closed family S PQ-tree

Definition 6 A PQ-tree is a tree whose leaves are labeled from 1 to n, whose internal nodes are
labeled P-nodes or (Q-nodes, such that a P-node has at least two children, such that a Q-node has
at least three children, and such that the children of a Q-node are totally ordered.

An extended frontier of a PQ-tree is either the frontier of a P node, or the union of frontiers
of consecutive children of a ) node, or a singleton.

Proposition 9 [3, 7] Given a closed family, there exists a PQ-tree such that the intervals of
the family are exactly the extended frontiers. The strong intervals of the family are exactly the
frontiers of this tree. Furthermore the PQ-tree is unique up to @ node reversals.

Let I} = (l3..r1), ..Jx = (lg..rx) the children of a @ node. For every i, I; U I;1 is an interval
of the family. I; and I; 1, are disjoint, thus r; +1 =1;41 or r;11 = 1; + 1. The canonical PQ-tree
is the one where all () nodes are sorted in increasing order, ie 7; + 1 = [;11.

Example. Let Py = {Idy, Py, P5, Ps} with

Idy = (1,2,3,4,5,6,7,8,9) P = (6,5,7,8,9,1,2,3,4)

P4 = (97877a5a6547372’ 1) P6 = (173a2a4757679a83 7)
Figure 3 shows the canonical generator and the corresponding PQ-tree of the set Ps. Algorithm 6
produces the stack (1,1,1,1,1,2,2,2,2, 3,3,3,3 4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,9,9,9,9,9)

and ouputs the set of strong intervals: (1..1), (2..2), (3..3), (2..3), (2 3), (4.. ) (1.. ), (5..5), (6..6),
(5..6), (5..6), (7..7), (8..8), (9..9), (7..9), (7..9), (1..9). These strong intervals are the backbone of
the PQ-tree.

Thus, given the inclusion tree of the strong intervals of a closed family F, a PQ-tree of F can
be built by labelling P or @ the internal nodes of the inclusion tree and by ordering the children
of the @ nodes. Fortunately, Algorithm 7 directly orders the children of every node (including
the upcoming @ nodes) by increasing values of the first bounds of their frontiers. The resulting
PQ-tree is therefore the canonical one. We just have to label P or ) the resulting nodes.

No internal node of the inclusion tree has a single child, since the node and its child would
have the same frontier. Every node with 2 children is labelled P. To test wether a node with at

11
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Figure 3: Example of the canonical generator and the associated PQ-tree for the set of permuta-
tions PQ = {Idg, P4, P57 PG}

least three children is P or @, it suffice to probe its two first children: if their union is an interval
of the family the node is labelled @, otherwise it is labelled P. This can be done in O(1) time per
node, using the generator.

5.3 From PQ-tree to canonical generator

Given a PQ-tree T, the o(T) is a permutation of the leaves obtained by a left-to-right traversal
of the tree. We can assume o(7") = Id,, by renaming the leaves of T. In this section we explain
how to compute the canonical generator of the closed family represented by T

Let N be a node with children I;..I. Let [; and r; be the indices of the left and right bounds of
I;. Let imin(N) and imax(N) be the indice respectively of the minimum element of N and of the
maximal element of N. Computing imin and imaz can be done in O(n) by a simple bottom-up
traversal.

Algorithm 8: Computing the canonical generator from a PQ-tree.
For each internal node N taken bottom-up
If N is a Q node
For i from 1 to k
L{imax(I;)] < imin(N)
R[imin(I;)] < imax(N)

Else
Rlimin(I1)] « imax(N)
L{imax(I,)] < imin(N)
R[imin(Iy)] < imaxz(N)

L{imax(I};)] < imin(N)

For i from 2 to k — 1
Llimaz(1;)] < imin(I;)
Rlimin(I;)] < imax(I;)

Proposition 10 Algorithm 8 computes the canonical generator of a closed family in O(n) time.

Proof. Time complexity is obvious because the PQ-tree has O(n) nodes. Let us prove that the
algorithm computes the canonical generator. First, for all ¢ R[i] and L[i] are assigned because for
the node IV that bears the leaf i as jth node, i = imin(I;) and i = imax(;).

12



When R[imin(I;)] is assigned, (imin(I;)..R[imin(I;)]) is an interval of F: if N is a P node
then (imin(l;)..R[imin(l;)]) = I; and if N is a @ node then (imin(I;)..R[imin(I;)]) is the union
of all consecutive children of @ from ¢ to k. The other cases are similar.

Let Rj[t]..R:[{] be the values taken by variable R][i] across time. As the nodes are visited
bottom-up, the intervals (i..R,[i]) are an increasing sequence of intervals. We shall now prove
that this sequence ends on the largest interval starting at i (resp. ending at j). Let us suppose
that (i..R:[i]) # (i..R[i]). Then R:[i] < RJ[i] as (i..R¢[i]) belongs to F. Let us suppose (i..R:[i]) is
not strong. Then it is the union of children I,..I, of some @ node N. The algorithm sets R;[i|
to the last bound of the last child of N. As (i..R[i]) is larger, it overlaps the strong interval N,
a contradiction. Now let us suppose (i..R:[i]) to be strong. It corresponds to a node I of the
PQ-tree whose parent is N. Either (i..R[i]) contains N or N is a @ node and (i..R[i]) is a union
of children of N. In the first case, i = imin(N) and thus R:[i] > imax(N), a contradiction. In
the second case, R:[i] = imax(N), which also contradicts R;[i] < R[i] = imax(N).

We proved that the sequence of R,[i] converges towards R[i] for all i. The case for Ly[j] is
similar. O

6 Modular decomposition

Let G = (V, E) be a directed, finite, loopless graph, with |V| = n and |E| = m. Undirected graphs
may be seen as symmetrical directed graphs in this context. A module is a subset M of V that
behaves like a single vertex: for @ ¢ M either there are |M| arcs that join z to all vertices of
M, or no arc joins x to M, and conversely either there are |M| arcs that join all vertices of M
to x, or no arc joins M to z. A strong module does not overlap any other module. There may
be up to 2" modules in a graph (in the complete graph for instance) but there are at most O(n)
strong modules, and the modular decomposition tree based on the strong modules inclusion tree
is sufficient to represent all modules [17]. The modular decomposition tree is indeed the PQ-tree
of the family of modules.

Modular decomposition is the first step in many graph algorithms like graph recognition (eg.
cographs, interval graphs, permutation graphs and other classes of perfect graphs, see [5] for a
survey) and transitive orientation computation [15].

Linear-time decomposition algorithms have been discovered [8, 15] but remain rather complex.
Simpler algorithms work in two steps: computing a factorizing permutation, and then building
a tree representation on it. The first step was published in [11]. In this paper, we simplify the
second step.

A factorizing permutation of a graph [6] is a permutation of the vertices of the graph in
which every strong module of the graph is a factor, that is an interval of the permutation. Since
the strong modules are a commuting family, every graph admits a factorizing permutation. A
factorizing permutation of a graph can be computed in linear time [11]. In the following we
assume, without loss of generality, that the vertex-set V is the set {1,..n} and that the identity
permutation is a factorizing permutation of the graph.

Given an interval (u..v) of the factorizing permutation, a vertex x ¢ (u..v) is a splitter of the
interval if there are between 1 and v — u arcs going from z to (u..v), or if there are between 1 and
v—w arcs going from (u..v) to x. A right-module is an interval (u..v) with no splitters greater than
v. A left-module is an interval (u..v) with no splitters smaller than u. An interval-module is an
interval (u..v) with no splitters. Clearly interval-modules are modules. However, some modules
are not interval-modules, but, according to the definition of a factorizing permutation, the strong
modules of the graph are interval-modules. It is well known that modules behave like intervals:
unions, intersections or differences of two overlapping modules are modules. Thus:

Proposition 11 [17] The interval-modules of a factorizing permutation of a graph G are a closed
family. The strong intervals of this family are exactly the strong modules of the graph G.

Definition 7 For a vertex v let R[v] be the greatest integer such that (v..R[v]) is a left-module
and L[v] the smallest integer such that (L[v]..v) is a right-module.

13



It can be proved that for every w € (L[v]..v), (w..v) is a right-module, and for every w < L[v],
(w..v) is not a right-module. For this reason (L[v]..v) is called the maximal right-module ending
at v. In a similar way, we can define the maximal left-module beginning at v. We have:

Proposition 12 The pair (R, L) is a commuting generator of the interval-modules family.

Proof. Interval (u..v) is an interval-module if and only if R[u] > v and L[v] < u, thus (R, L) is
a generator. The family defined by R is commuting because if (u..R[u]) overlaps (v..R[v]), and
if, without loss of generality, u < v, then (u..R[v]) is a left-module starting at u greater than the
maximal left-module (u..R[u]), which is a contradiction. A similar argument shows that L also is
commuting. O

In order to compute the maximal right-strong modules, we use a simplified version of an
algorithm due to Capelle and Habib [6]. The algorithm to compute the maximal left-modules is
similar.

Let us consider the maximal right-module (L[v]..v) ending at v. If L[v] > 1, then there exists an
x > v that splits (L[v] — 1..v), otherwise this right-module would not be maximal, and z therefore
splits (L[v] — 1..L[v]), but does not split (y — 1,y) for all L[v] < y < v. Based on this observation,
Capelle and Habib algorithm proceeds in two steps. First, for every vertex v the rightmost splitter
s[v] is computed. It is the greatest vertex, if any, that splits the pair (v — 1..v). Then a loop for
v from n to 2 computes all the maximal right-modules (L[z]..x) such that v = L[z]. Computing
s[v] can be done by a simultaneous scan of the adjacency lists of v and v — 1: the greatest element
occurring in only one adjacency list is kept. This can be done in time proportional to the size of
the adjacency lists. The computation of s[v] for all v can therefore be done in O(n 4+ m) time,
that is linear in the size of the graph. The second step is Algorithm 9. It clearly runs in O(n)
time, and its correctness relies on the following invariant:

Invariant At step v, for all vertices x in the stack, (v..x) is a right-module, and for all x > v
not in the stack, L[v] > v.  Proof. The invariant is initially true. Every step maintains it: if
s[v] does not exist then for all = in the stack (v — 1..x) is a right-module, and (v — 1..v) also is
a right-module. And if s[v] exists, (v) is the maximal right-module ending at v. For all z < s[v]
(v—1..x) is not a right-module and (v..z) is therefore the maximal right-module ending at . For
all z > s[v] (v—1..z) is still a right-module, because s[v] is the greatest of the splitters of (v—1,v).
O

We thus have:

Theorem 4 Given a graph G, and a factorizing permutation of G, it is possible to compute the
modular decomposition tree of G in time O(n +m).

Algorithm 9: Computing all maximal right-modules given s[v]

S is a stack of vertices; t denotes the top of S.
for v from n to 2
if s[v] exists
Lv] «wv
While t < s[v]
Lt] — v
Pop the top of S
else
Push v on S

7 Conclusion
In the present work, we formalized two concepts about common intervals, namely generators and

canonical representation, that proved to have important algorithmic implications. Indeed, the
combinatorial properties of these objects, and in particular the different links between them, are
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central in the design and the analysis of the simple optimal algorithms for computing common
intervals of permutations we presented. It is important to highlight that our algorithms are really
“optimal” since they are based on very elementary manipulations of stacks and arrays. This is,
we believe, a significant improvement over the existing algorithms that are based on intricate
data structures, both in terms of ease of implementation and time efficiency, and in terms of
understanding the underlying concepts [12, 18].

Moreover, we showed how, transposed in the more general context of modular decomposition
of graphs, our results have a similar impact and lead to a significant simplification of some existing
algorithms. Indeed, modular decomposition algorithms are quite complex algorithms, but using
the simple factorizing permutation algorithm of [11] and the right-modules identification algorithm
of Section 6, a generator of the interval-modules can easily be computed in linear time; tools from
Section 5.1 can then be used to compute the strong interval-modules, that also are the strong
modules, and the PQ-tree, called modular decomposition tree in this context.
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