
22

Tight Failure Detection Bounds on Atomic
Object Implementations

CAROLE DELPORTE-GALLET AND HUGUES FAUCONNIER

LIAFA Univ Paris-Diderot, France

AND

RACHID GUERRAOUI

EPFL Lausanne, Switzerland

Abstract. This article determines the weakest failure detectors to implement shared atomic objects
in a distributed system with crash-prone processes. We first determine the weakest failure detector
for the basic register object. We then use that to determine the weakest failure detector for all
popular atomic objects including test-and-set, fetch-and-add, queue, consensus and compare-
and-swap, which we show is the same.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—distributed networks; C.2.4 [Computer-Communication Networks]:
Distributed Systems; D.4.1 [Operating Systems]: Process Management—concurrency, multipro-
cessing/multiprogramming, synchronization; F.1.1 [Computation by Abstract Devises]: Models of
Computation—relations among models

General Terms: Algorithms, Theory, Reliability

Additional Key Words and Phrases: Atomic objects, failure detection

ACM Reference Format:
Delporte-Gallet, C., Fauconnier, H., and Guerraoui, R. 2010. Tight failure detection bounds on atomic
object implementations. J. ACM 57, 4, Article 22, (April 2010), 32 pages.
DOI = 10.1145/1734213.1734216 http://doi.acm.org/10.1145/1734213.1734216

1. Introduction

A shared atomic object is a data structure exporting a set of operations that can
be invoked by concurrent processes. Atomicity means that every object operation

Authors’ addresses: C. Delporte-Gallet and H. Fauconnier, Laboratoire d’Informatique Algorith-
mique: Fondements et Applications, CNRS UMR 7089, Université Paris Diderot, Paris 7, Case
7014, 75205 Paris Cedex 13 France, e-mail: {Carole.Delporte, Hugues.Fauconnier}@liafa.jussieu.fr;
R. Guerraoui, EPFL IC IIF LPD, INR 310 (Bátiment INR), Station 14, CH-1015 Lausanne,
Switzerland, e-mail: rachid.guerraoui@epfl.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0004-5411/2010/04-ART22 $10.00
DOI 10.1145/1734213.1734216 http://doi.acm.org/10.1145/1734213.1734216

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:2 C. DELPORTE-GALLET ET AL.

appears to execute at some individual instant between its invocation and reply
time events [Lamport 1986; Herlihy and Wing 1990]. Many distributed algorithms
are designed assuming atomic objects as underlying synchronization primitives.
These include objects of types register, test-and-set, fetch-and-add, queue,
consensus, and compare-and-swap.

We study necessary and sufficient conditions for implementing atomic object
types in software assuming processes can communicate by message passing, that is,
with no actual shared physical memory. Through such implementations, algorithms
based on shared atomic objects can be automatically emulated in a message passing
system.

CONTEXT. We consider a distributed system where processes communicate
through reliable channels but can fail by crashing. If it crashes, a process halts
its activities. Otherwise, it does not deviate from the algorithm assigned to it. We
study robust [Attiya et al. 1995] implementations where any process that invokes
an object operation and does not crash eventually gets a reply.

If the distributed system provides no information about failures, then two funda-
mental results are known about atomic object implementations. (1) The type regis-
ter can be implemented if and only if a minority of the processes can crash [Attiya
et al. 1995], and (2) we cannot implement any of the types test-and-set, fetch-
and-add, queue, compare-and-swap and consensus, even if only one process
may crash [Herlihy 1991; Fischer et al. 1985; Loui and Abu-Amara 1987]. On the
other hand, if we can assume a perfect failure detection mechanism that provides
the processes with the ability to accurately detect crashes, then all these objects
can be implemented irrespective of the number of processes that can crash.

It is natural thus to ask what amount of failure information is actually necessary
and sufficient to implement such atomic objects. The question can be expressed
precisely using the notion of failure detector reduction introduced in Chandra and
Toueg [1996]. Failure detectors can indeed be viewed as abstract oracles that output
information about crashes, and they can be precisely compared. Basically, a failure
detector D is said to be stronger than a failure detector D′ if there is a distributed
algorithm that uses D to emulate the output of D′ (D′ is said to be weaker than
D) [Chandra and Toueg 1996].

It was shown in Chandra et al. [1996] that, assuming only a minority of processes
can crash, the weakest failure detector to implement consensus is an oracle
which outputs, at any time and at every process, a single leader process such
that, eventually, this leader does never crash and is permanently the same at all
processes [Chandra et al. 1996]. The meaning that � is the weakest to implement
consensus (assuming only a minority of processes can crash) is twofold: (a) there
is a distributed algorithm that implements consensus using � (assuming only a
minority of processes can crash), and (b) for every failure detectorD such that some
algorithm implements consensus using D, D is stronger than �. Given that the
compare-and-swap type can emulate the consensus type, and consensus can
emulate any atomic object type if only a minority of processes can crash [Herlihy
1991], � is thus also the weakest to implement the compare-and-swap type if
only a minority of processes can crash.
The general questions remained however open:

—What is the weakest failure detector for all other object types? For instance,
types like queue, test-and-set, or fetch-and-add are, in a precise sense, less

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:3

powerful than consensus: they can emulate consensus in a subsystem of
two processes but cannot in any subsystem of more than two processes (un-
like compare-and-swap [Herlihy 1991]). These types have consensus num-
ber 2 in the parlance of Herlihy [1991]. On other hand, compare-and-swap
has consensus number n in any system of n processes. It is natural to seek
for the weakest failure detector to implement objects with consensus number
k < n; one would expect such a weakest failure detector to be strictly weaker
than �.

—What if half of the processes can crash? As we pointed out, the basic type
register cannot be implemented if there is no failure information and half of the
processes might crash: it is thus natural to seek for the weakest failure detector to
implement the register type in case half of the processes can crash? In this case,
it is also known that � does not implement consensus [Chandra and Toueg
1996]. So what is the weakest failure detector to implement consensus (and
other object types) if half of the processes might crash?

CONTRIBUTIONS. This article closes the general questions above. We deter-
mine the weakest failure detectors to implement the basic type register as well as
any object type with consensus number 1 < k ≤ n, that is, including types like
consensus, compare-and-swap, queue, test-and-set and fetch-and-add. We
do so in any environment [Chandra and Toueg 1996], that is, given any assumption
about the number and timing of process failures, and for any subset of processes
in the system.

We proceed as follows. Considering any environment and any subset S of processes
in the system:

(1) We first determine (1) the weakest failure detector to implement a register
shared by processes in S, and then we derive from it (2) the weakest failure
detector to implement a consensus shared by processes in S.
—The first failure detector, denoted by �S , outputs, at any time and at every

process of S, a set of processes such that (a) any two sets always intersect
and (b) eventually every set contains only processes that never crash.

—The second failure detector, which we denote by �S ∗ �S , outputs, at any
time and at every process of S, both outputs of failure detector �S and a
failure detector, which we introduce here and we denote by �S . Failure
detector �S outputs, at any time and at every process of S, a single leader
process, such that, eventually this leader is the same at all processes of S
and does never crash.

(2) We then show that for any integer 1 < k ≤ n, the weakest failure detector to
implement any type shared by processes in S that emulates consensus among
k processes is also �S ∗ �S .

INTERPRETATIONS

—Failure detector �S encapsulates the exact information about failures needed to
implement a basic shared memory abstraction made by registers over a subset S
of processes communicating by message passing. This generalizes in a precise
sense the result of Attiya et al. [1995]. In particular, assuming at most a minority
of processes can crash, �, the restriction of �S to the case where S is the entire

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:4 C. DELPORTE-GALLET ET AL.

system, can indeed be implemented directly with message passing (with no
failure information).

—Identifying failure detector �S ∗ �S generalizes, for any subset of processes
and any environment, the fundamental result of Chandra et al. [1996]. Indeed,
assuming at most a minority of processes can crash, � ∗ �, the restriction of
�S ∗ �S to the case where S is the entire system, is equivalent to � [Chandra
et al. 1996].

—Our result that, for any 1 < k ≤ n, the weakest failure detector to implement
any type that emulates consensus among k processes is also � ∗�, reveals the
interesting fact that the notion of consensus number [Herlihy 1991; Jayanti 1993]
(as long as it is strictly higher than 1) of a type has no impact on the information
about failures needed to implement this type. For instance, the information about
failures that is necessary and sufficient to implement a type like queue and test-
and-set over message passing, is the same as the information that is necessary
and sufficient to implement types like compare-and-swap and consensus.
More generally, and given that most synchronization problems can be cast as
atomic types, our result means that, as long as failure detection is concerned,
adopting an ad-hoc approach focusing on each problem individually is not better
than a general approach where the failure detector � ∗� would be implemented
as a common service underlying all problems, that is, all type implementations.

ROADMAP. The rest of the article is organized as follows. Section 2 defines our
model. Section 3 introduces failure detectors �S and �S , then establishes some
preliminary results about the characteristics of these failure detectors. Section 4
determines the weakest failure detector to implement a register. Section 5 deter-
mines the weakest failure detector to implement atomic types with a consensus
number k > 1. Section 6 compares failure detectors � and �. Section 7 concludes
the article.

2. System Model

Stating and proving our result goes through defining a general model of distributed
computation encompassing different kinds of abstractions: atomic objects, mes-
sage passing and failure detectors. Our model, and in particular our notion of
implementation, is a generalization of both the notions of shared memory object
implementations of Herlihy [1991] as well as failure detector reductions of Chandra
and Toueg [1996].

We consider a distributed system composed of a finite set of n processes � = {p1,
p2, . . . , pn}; |�| = n ≥ 2. (Sometimes, processes are denoted by p and q.) A
discrete global clock is assumed, and �, the range of the clock’s ticks, is the set of
natural numbers. The global clock is not accessible to the processes.

2.1. FAILURE PATTERNS AND FAILURE HISTORIES. A process does never deviate
from the algorithm assigned it (no Byzantine failures) except if it crashes, in which
case it simply halts any activity. A process p is said to be crashed at time τ if p
does not perform any action after time τ (the notion of action is defined below).
Otherwise; the process is said to be alive at time τ . Failures are permanent, that
is, no process recovers after a crash. A correct process is a process that does never
crash (otherwise, it is faulty).

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:5

A failure pattern is a function F from � to 2�, where F(τ) denotes the set of
processes that have crashed by time τ . The set of correct processes in a failure
pattern F is noted correct(F). As in Chandra and Toueg [1996], we assume that
every failure pattern has at least one correct process. An environment is a set of
failure patterns. Unless explicitly stated otherwise, our results are stated for all
environments. The environment consisting of the set of failure patterns where at
most t processes crash (0 < t ≤ n) is denoted Et .

Roughly speaking, a failure detector D is a distributed oracle that gives hints
about failure patterns of a given environment E . Each process p has a local failure
detector module of D, denoted by Dp. Associated with each failure detector D is a
range RD (when the context is clear we omit the subscript) of values output by the
failure detector. A failure detector history H with range R is a function H from
� × � to R. For every process p ∈ �, for every time τ ∈ �, H (p, τ) denotes the
value of the failure detector module of process p at time τ , that is, H (p, τ) denotes
the value output by Dp at time τ .

A failure detector D is then defined as a function that maps each failure pattern
F of E to a set of failure detector histories with range RD: D(F) denotes the set
of all possible failure detector histories permitted for the failure pattern F . Let
D and D′ be any two failure detectors, D ∗ D′ denotes the failure detector, with
range RD ∗ RD′ , which associates to every failure pattern F , the set of histories
D ∗ D′(F) = {(H, H ′) | H ∈ D(F), H ′ ∈ D′(F)}. This notation is naturally
extended to a finite set of failure detectors K : ∗{D | D ∈ K }.

2.2. ACTIONS, RUNS AND SCHEDULES. To access its local state or shared ser-
vices, a process p executes (deterministic) actions from a (possibly infinite) alpha-
bet Ap. Each action is associated with exactly one process and the set of all actions
A is a disjoint union of sets of alphabets, each associated to a given process Api

(1 ≤ i ≤ n). The state of a process after it executes action a in state s, is denoted
a(s). A configuration C is a function mapping each process to its local state. When
applied to a configuration C , action a of Api gives a new unique configuration
denoted a(C): for all j �= i (a(C))(p j) = C(p j) and (a(C))(pi) = a(C(pi)).

An infinite sequence of actions is called a schedule. In the following, Sc[i]
denotes the i-th action of schedule Sc. Given seq = a1 · · · ai ai+1 a prefix of a
schedule and C a configuration, the new configuration seq(C) resulting from the
execution seq on some C is defined by induction as ai+1((a1 . . . ai)(C)). To each
schedule Sc = a1 · · · ai ai+1 · · · and configuration C0 correspond a unique sequence
of configurations C0C1 · · · Ci Ci+1 · · · such that Ci+1 = ai+1(Ci).

A run is a tuple α =< F, C, Sc, T >, where F is a failure pattern, C a
configuration, Sc a schedule, and T a time assignment represented by an infinite
sequence of increasing values such that: (1) for all k, if Sc[k] is an action of process
p then p is alive at time T [k] (p /∈ F(T [k])) and (2) if p is correct then p executes
an infinite number of actions. An event e is the occurrence of an action in Sc, and
if e is the kth action in Sc, then T [k] is the time at which event e is executed.

Consider an alphabet of actions A and any subset B of A. Let Sc|B be the
subsequence of Sc consisting only of the actions of B, and T |B be the subse-
quence of T corresponding to actions of B in α =< F, C, Sc, T >. We call
< F, C, Sc|B, T |B > the history corresponding to B, and we simply denote it by
α|B. In particular, when B = Api , Sc|Api , T |Api , α|Api are the restrictions to the
process pi ; α|Api is called the history of process pi in α.

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:6 C. DELPORTE-GALLET ET AL.

In the following, by abuse of language, we simply denote the restrictions to the
process pi by Sc|pi , T |pi , and α|pi .

2.3. SERVICES. In this article, we consider three kinds of services: message
passing channels, atomic objects and failure detectors. A service is defined by a pair
(Prim, Spec). Each element of Prim, denoted by prim, is a tuple < s, p, arg, ret >
representing an action of process p identified by a sort s, an input argument arg
from some (possibly infinite) range In and an output argument (or return value) ret
from some (possibly infinite) range Out. An empty argument is denoted by λ. The
specification Spec of a service X is defined by a set of runs.

2.3.1. Message Passing. The classical notion of point-to-point message passing
channel, represented here by a service and denoted MP, is defined through primitive
send(m) to q of process p and primitive receive() from q of process p. More
formally, these primitives are respectively a tuple < send to q, p, m, λ > with
m ∈ M where M is a set of messages and a tuple < receive from q, p, λ, x > with
x ∈ M ∪ {λ}.

Primitive receive() from q returns either some message m or the null message
λ; in the first case we say that p received m. Each non null message is uniquely
identified and has a unique sender as well as a unique potential receiver. The
specification Spec of MP stipulates that: (1) the receiver of m receives it at most
once and only if the sender of m has sent m; (2) if process p is correct and if process
q executes an infinite number of receive() from p primitives, then all messages sent
by p to q are received by q.

2.3.2. Failure Detector. The only primitive defined for a failure detector service
is a query without argument that returns one value in the failure detector range.

A run α =< F, C, Sc, T > satisfies the specification of a failure detector D if
there is a failure detector history H ∈ D(F) such that for all k, if Sc[k] is a query
of D by process p that outputs v , then H (p, T [k]) = v . Any such history is said to
be associated with run α.

2.3.3. Atomic Object. Atomic objects are specific kinds of services exporting
a set of operations defined by a sequential specification. Such a specification
stipulates the values to be returned by the object’s operations when invoked by
non-concurrent processes. Each occurrence of an operation is realized through
two actions: an invocation (i.e., a tuple < opinvoke, p, arg, λ > where op is the
operation and arg the argument of the operation op) and a reply (i.e., a tuple
< opreply, p, λ, ret > where ret is the value return by the operation op). The
sequential specification of an atomic object is defined by an initial state of the
object as well as a type.

A type T is a tuple < Q, Inv, Rep, L >: where Q is the set of states of the
type, Inv is a set of invocations, Rep is a set of replies, and L is a relation that
carries each state st of the object, st ∈ Q and invocation op of Inv to a set of
state and reply pairs, which are said to be legal, and denoted by L(st, op). When
L is a function, the type is said to be deterministic. An invocation inv and a reply
rep are said to be matching if they are actions of the same process p and if there
exist states st and st ′ such that (st ′, rep) belongs to L(st, inv). A (finite or infinite)
sequence σ = (o0r0)(o1r1) · · · (o jr j) · · · where, for all l, ol and rl are, respectively,
invocations and replies, is legal from state s if there is a corresponding sequence

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:7

of states s = s0, s1, . . . , s j , . . . such that, for each l (sl+1, rl+1) ∈ L(sl, ol). Such a
sequence is called a sequential history of object O from initial state s.

We say that some occurrence of invocation is pending in a schedule if it has no
matching reply in that schedule. Consider a schedule Sc, and its restriction Sc|p
to a process p. We say that Sc is well formed if (1) no prefix of Sc|p has more
than one occurrence of a pending invocation and (2) (Sc|p)|Prim begins with an
invocation and has alternating matching invocations and replies. By extension, a
run α =< F, C, Sc, T > is well formed if its schedule Sc is well formed and there
is no pending invocation for correct processes in F . Only well formed schedules
and runs are considered.

When reasoning about the atomicity of an object, we consider only operations
that terminate, that is, both invocation inv and the matching reply have taken place.
If a process p performs an invocation inv and then p crashes before getting any
reply, we assume that either the state of the object appears as if inv has not taken
place, or inv has indeed terminated. An operation is said to precede another if the
first terminates before the second starts. Two operations are concurrent if none
precedes the other.

Let α =< F, C, Sc, T > be any well formed run of an algorithm. Remember
that C is an initial configuration, and configurations represent the state of the
system, including the states of its objects. Let α|Prim be the history corresponding
to object O =< Prim, Spec > of type T , a linearization of α|Prim with respect
to T and state s is a pair (H, T ′) such that: (1) H is a sequential history of O
from state s; (2) H includes all nonpending invocations of operation in Sc; (3) If
some invocation inv is pending in Sc, then either H does not include this pending
invocation or includes a matching reply; (4) H includes no action other than the
ones mentioned in (2) and (3); (5) T ′ is an infinite sequence such that if Sc[k] is an
invocation and Sc[k ′] the matching reply, corresponding respectively to H [l] and
H [l + 1] then T ′[l] = T ′[l + 1] belongs to the interval (T [k], T [k ′]). A run α is
linearizable for type T and state s if α has a linearization with respect to T and
state s. The specification Spec associated to an object O of type T and initial state
s is the set of runs well-formed for O that are linearizable with respect to T and
state s [Herlihy and Wing 1990].

2.4. ALGORITHMS AND IMPLEMENTATIONS. An algorithm A =< A1, . . . , An,
Serv >, using a set of services Serv, is a collection of n deterministic automata
Ai (one per process pi) with transitions labeled by actions in Ai such that all
operations defined for services in Serv are included in A. Every transition of Ai
is a tuple (s, a, s ′) where s and s ′ are local states of pi and a is an action of
pi such that a(s) = s ′. Computation proceeds in steps of the algorithm: in each
step of an algorithm A, a process p atomically executes an action in A. If a
is an action of pi and C is a configuration, a is said to be applicable to C if
there is a transition (s, a, s ′) in Ai such that s = C(pi). By extension, a schedule
Sc = Sc[1]Sc[2] · · · Sc[k] · · · is applicable to a configuration C if for each k > 1,
Sc[k] is applicable to configuration (Sc[1] · · · Sc[k − 1])(C). A run of algorithm A
is a run α =< F, C, Sc, T > such that Sc is a schedule applicable to configuration
C , such that α satisfies the specifications of services in Serv.

Roughly speaking, implementing a service X using a set of services Serv
means providing the code of a set of subtasks associated with every pro-
cess: one subtask for each primitive sort of X as well as a set of additional

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:8 C. DELPORTE-GALLET ET AL.

subtasks. The subtasks associated to the primitives are assumed to be sequen-
tial in the following sense: if a process p executes a primitive prim (of the service
to be implemented), the process launches the associated subtask and waits for
it to terminate and returns a reply before executing another primitive. All sub-
tasks use services in Serv to implement service X , in the sense that the only
primitives used in these subtasks are primitives defined in Serv. More precisely,
an implementation of a service X =< Prim, Spec > with primitives of sorts
ps1, . . . , psm , using a set of services Serv, among n processes, is defined by
I (X, n, Serv) =< (X1, (ps1

1 , . . . , ps1
m)), . . . , (Xn, (psn

1 , . . . , psn
m)) > where, for

each i , Xi is the implementation subtask of pi and psi
j is the primitive implemen-

tation subtask associated to process pi and the primitive of sort ps j of X such that
the only primitives occurring in these subtasks are primitives defined in Serv.

An implementation I (X, n, Serv) for environment E ensures that for each
algorithm A =< A1, . . . , An, Serv ′ ∪ {X} >, the corresponding algorithm
A′ =< A′

1, . . . , A′
n, Serv ∪ Serv ′ > in which X is implemented by I (X, n, Serv)

where, for each i , A′
i is the automaton corresponding to the subtasks Ai , Xi ,

psi
1, . . . , psi

j is such that all runs α of A′, restricted to actions of A1, . . . , An , are
runs of A.

In this article, we study robust implementations of services [Attiya et al. 1995]:
every correct process that executes a primitive of an implemented service eventually
gets a reply from that invocation. We will sometimes focus on implementations of
S-services: the primitives of such a service can only be invoked by processes of a
subset S of the system. In such implementations, the only restriction is the fact that
only the processes in S contain each one subtask per primitive sort of the S-service
(but all processes contain implementation tasks). If we do not specify the subset S,
we implicitly assume the set of all processes.

2.5. WEAKEST FAILURE DETECTOR. The notion of failure detector D2 being
reducible to D1 in a given environment E [Chandra and Toueg 1996] means in
our context that there is an implementation of D2 using D1 and MP in E . Failure
detector D1 is said to be stronger than D2 in E and written D2
E D1. All
implementation subtasks use only MP and D. We say that D1 is equivalent to D2
in E (D1 ≡E D2), if D2
E D1 and D1
E D2.

We say that a failure detector D1 and MP implement a given service (in envi-
ronment E) if there is an algorithm that uses D1 and MP to implement that service
(in E).

We say that a failure detector D1 is the weakest to implement a given service in
environment E if and only if the two following conditions are satisfied: (1) there
is an implementation of the service using D1 and MP in E , and (2) if there is an
algorithm that implements the service using some failure detector D2 in E , then D2
is stronger than D1 in E .

IMPLICIT ASSUMPTIONS. As pointed out earlier, most of our results hold for
all environments. Hence, unless explicitly stated otherwise, we will not assume
any specific environment In particular, we use the notation D2
 D1 to mean
D2
E D1 in every environment E . Similarly, as most of our implementations
use MP, unless explicitly stated otherwise, we will implicitly assume MP in the
services that are used by our implementations.

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:9

3. The Quorum and Leader Failure Detectors

We introduce here two new failure detectors: the Quorum and the Leader. Both are
defined relatively to a subset of processes S in the system. The first one is denoted
by �S . The second one, denoted by �S , generalizes failure detector � introduced
in Chandra et al. [1996].

We prove some properties of the composition of these failure detectors, which
will be useful in proving some of the main results of this article (Corollary 7 and
Corollary 2).

3.1. FAILURE DETECTOR �S . Basically, given any subset S of processes in �,
failure detector �S outputs, at each process in S, and at any time, a list of processes,
called trusted processes, such that (a) every list intersects with every other list, ever
output at any time and any process, and (b) eventually, all lists contain only correct
processes.

More precisely, failure detector �S outputs, to processes in S, lists of processes
that satisfy the two following properties:

—Intersection. Every two lists of trusted processes intersect: ∀F ∈ E, ∀H ∈
�S(F), ∀p, q ∈ S, ∀τ, τ ′ ∈ � : H (p, τ) ∩ H (q, τ ′) �= ∅;

—Completeness. Eventually, every list of processes trusted by a correct pro-
cess contains only correct processes: ∀F ∈ E, ∀H ∈ �S(F), ∀p ∈ S ∩
correct(F), ∃τ ∈ �, ∀τ ′ > τ ∈ � : H (p, τ ′) ⊆ correct(F).

To simplify the definition, we consider that, at any process of S that has crashed,
the list that is output is simply �.

It is easy to see that � can easily be implemented in an asynchronous message
passing system assuming the majority environment (we give a simple algorithm in
Section 6).

The following proposition is a direct consequence of the definition of ��:

PROPOSITION 1. Let S be any subset of � and let L be any family of subsets
of S such that, for all p, q ∈ S, there exists L ∈ L such that p ∈ L and q ∈ L. We
have: �S ≡ ∗{�X |X ∈ L}.

An interesting particular case is where subsets X are pairs, that is, for any S ⊆ �,
�S ≡ ∗{�{p,q}|p, q ∈ S}. The composition of all �S , over all subsets S of size 2,
is in this case �:

COROLLARY 2. For all S ⊆ �, �S ≡ ∗{�{p,q}|p, q ∈ S}.
3.2. FAILURE DETECTOR �S . Given any subset S of processes in �, failure

detector �S outputs at any time and at any process, one process called the leader,
such that all processes inside S eventually get the same correct leader. More
precisely, assuming at least one correct process in the system, the following property
is satisfied:

—Unique eventual leader: ∀F ∈ E, ∀H ∈ �S(F), ∃l ∈ correct(F), ∃τ ∈
�, ∀τ ′ > τ, ∀x ∈ correct(F) ∩ S, H (x, τ ′) = {l}
Note that processes outside S might never get the same leader or might per-

manently get crashed leaders. Note also that the leader process that is output (in

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:10 C. DELPORTE-GALLET ET AL.

particular to processes in S) does not need to be in S: it can be any process in �.
Failure detector � from Chandra et al. [1996] corresponds to ��.

We state and prove below a useful property of the composition of �S failure
detectors over several subsets S. This property will be key to show later that the
weakest failure detector to implement all objects with consensus number k > 1 is
the same.

PROPOSITION 3. LetL be any family of subsets of � such that, for all p, q ∈ �,
there exists some L ∈ L such that p ∈ L and q ∈ L. We have: � ≡ ∗{�L |L ∈ L}.

PROOF. As � is also �L for every L ⊆ �, we directly get: ∗{�L |L ∈ L}
 �.
Proving that �
 ∗{�L |L ∈ L} is more involved. The idea is for the processes

to collectively use the outputs of their �L failure detectors in order to construct
a directed graph (digraph), and then use this graph to eventually extract the same
correct process.

Consider any failure pattern F . Consider the digraph G =< V, E > for which
V = correct(F), and (p, q) ∈ E if and only if q is eventually permanently leader
for p for some �L such that p ∈ L . For all correct processes p, q, by definition of
L, there is at least one L , say L pq , within L such that p and q both belong to L pq .
Hence, there is a correct process x (the leader of p and q for this �L pq) such that
both (p, x) and (q, x) belong to E .

—We denote by G∗ =< V ′, E ′ > the digraph of the strongly connected component
of G: V ′ is the set of strongly connected components of G and (C, C ′) ∈ E ′ if
and only if there is at least one process p ∈ C and one process q ∈ C ′ such that
(p, q) ∈ E .

—We say that C ∈ V ′ is a sink of G if there is no edge going out of C . Note that
this means that, if p ∈ C and (p, q) ∈ E , then q ∈ C .

—For correct process p in V , we denote by G|p =< W, F > the restriction of G
to p: W is the set of all x ∈ V such that there is a path in G from p to x and
(x, y) is in F if (x, y) is in E . As for G, we define the sinks of G|p by locating
its strongly connected components without outgoing edges.

It is easy to see that G has exactly one sink S, which is also the unique sink of
every restriction G|p to any correct process p. We describe below an algorithm
where every process p uses ∗{�L |L ∈ L} to eventually construct graph G|p above
and output in a variable Trustp a correct process from its sink S which will be the
same for all correct processes (emulating the output of �).

Every process p periodically performs the following:

(1) p consults its �L failure detectors (p has at least one such failure detector),
gathers all outputs of those failure detectors in a variable Leaderp

p, and broad-
casts the value of this variable to all processes. Basically, Leaderp

p is the set of
processes output as leaders from �L for all L in L such that p ∈ L .

(2) Upon receiving a set of leaders from some process q, process p updates a
variable Leaderq

p gathering all leaders of q (as known to p). If p subsequently
receives from q a new set X of leaders, then p replaces Leaderq

p by X .

(3) Using variables Leaderq
p, process p maintains a directed graph (digraph)

G p =< Vp, E p > for which Vp = �, and (r, q) ∈ E p if q ∈ Leaderr
p.

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:11

We use the same notation ((G p|p),(G p|p)∗, sink) for G p as for G.
(4) Whenever it updates its graph G p =< Vp, E p >, p extracts two other digraphs:

G p|p and (G p|p)∗
(5) Whenever it builds the digraph (G p|p)∗, p locates all sinks of G p|p. If p

locates exactly one sink, then p outputs in variable Trustp the process with the
lowest id in that sink; else p outputs itself in variable Trustp.

Let τ0 be a time after which no process crashes and the output of failure detectors
�L , L ∈ L, does not change. As any change in Trustp comes from changes in the
output of �L’s, and no message is lost, then there is a time τ1 ≥ τ0 after which
Trustp does not change.

We consider the digraph G p obtained by a correct process p after time τ1. G p
has all the processes as vertexes, including faulty ones. If an edge has a crashed
process as source, this edge is constructed from the output of �L before time τ1.
When we consider G p|p, we remove crashed processes from the set of vertexes, but
we do not obtain G because we might have also removed some correct processes.
We show in the following that G|p = G p|p.

LEMMA 4. If x is a correct process, then (x, y) is an edge of G p if and only if
(x, y) is an edge of G.

PROOF. If x is a correct process, then after time τ1, Leaderx
p is the set of leaders

of x for some �L such that x ∈ L .

LEMMA 5. The set of vertexes of G p|p is a subset of correct(F).

PROOF. Let y be any vertex of G p|p. There is a path from p to y: s0 =
p,s1,..,sm = y such that (1) si is a vertex of G p and (2) (si , si+1) is an edge of G p.
As a consequence, si is a vertex of G p|p and (2) (si , si+1) is an edge of G p|p.

As p is correct and s1 is the leader by �L for some L that contains p, then s1 is
a correct process. By an easy induction, each si is a correct process.

LEMMA 6. G|p = G p|p.

PROOF. By Lemma 4 and Lemma 5, G p|p is a subgraph of G|p. We now prove
that G|p is also a subgraph of G p|p.

Let v be any vertex of G|p; by construction of G|p (1) v is correct, and (2) there
is a path from p to v . By Lemma 4, this path is also a path in G p, which implies
that v is a vertex of G p|p.

Let (x, y) be any edge of G|p; by construction of G|p, there is a path in G from
p to x , and an edge from x to y. By Lemma 4, this path and this edge are also in
G p. Let P be the set of vertexes in this path. From all the vertexes z in P ∪ {y},
there is a path from p to z in G p, which means that P ∪ {y} is a subset of the
vertexes of G p|p. By construction, (x, y) is an edge of G p|p.

Hence, the (unique) sink of G p|p is also the unique sink S of G|p. As the unique
sink of G|p is also the unique sink of G, all correct processes extract S. As S is a
non-empty subset of correct processes, all correct processes eventually output the
same correct process.

In particular, for the family of subsets of two elements:

COROLLARY 7. � ≡ ∗{�{p,q}|p, q ∈ �}.

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:12 C. DELPORTE-GALLET ET AL.

4. The Weakest Failure Detector to Implement a Register

4.1. OVERVIEW. We focus in this section on the basic register type. This object
has two operations, read() and write(), and its sequential specification stipulates
that a read() returns the last value written.

Consider any subset S of processes in the system �. We define a S-register
as one where any process in S can read or write: the processes outside S cannot.
When S is the overall set � of processes, such a register is sometimes called a
multi-writer/multi-reader register [Lamport 1986] (or simply a register).

We prove in this section the following result:

PROPOSITION 8. �S is the weakest failure detector to implement a S-register.

A direct corollary of this proposition is that � is the weakest failure detector to
implement a register.

The rest of the section is about proving the proposition. Our proof is based on
the existence of two algorithms.

(1) (Necessary condition) Our first algorithm, denoted R, emulates the output of
failure detector �S using any algorithm A that implements a S-register, that is,
R extracts �S from A. It is important at this point to notice that R does not use a
S-register as a black-box, but it actually uses the algorithm implementing it. In
some sense, R uses an open register that reveals information about its message
passing implementation. The basic idea of algorithm R is the following. Every
process p ∈ S periodically writes in the S-register, triggering executions of
A. For every such write w , process p tracks the processes that participate
in w ; namely, processes that send a A message that causally [Lamport 1978]
follow the invocation of w and precede the return of w . As we will explain,
this enables p to extract from A quorums of processes and emulate the output
of failure detector �S at p.

(2) (Sufficient condition) Our second algorithm uses �S to implement a S-register.
The algorithm is an adaptation of a classical implementation of a register in
a message passing system with a majority of correct processes [Attiya et al.
1995]. Instead of the assumption of a majority of correct processes, we simply
use �S .

4.2. PRELIMINARIES ABOUT REGISTERS. Before exhibiting the algorithms un-
derlying our proof, we introduce below a particular S-register. We consider a
S-register that can be read by all processes in S and written by exactly one process
p in S (the writer), and which we call a (p, S)-register.

We assume that different write operations store different values in the register:
this can simply be achieved by appending to every value the identity of the writer
process together with some local timestamp. We say that a value has been written
(respectively read) if the corresponding write (respectively read) has returned a
reply (i.e., was terminated). We assume that the register initially contains a specific
value ⊥. For uniformity of presentation, we assume that this value was initially
written by the writer.

Along the lines of Attiya et al. [1995], Attiya and Welch [1998], and Herlihy and
Wing [1990], the correctness of an implementation of an atomic (p, S)-register
can be conveniently expressed through three properties.

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:13

—(1) Termination (liveness). If a correct process of S invokes an operation, the
operation eventually terminates.

—(2) Validity (safety 1): Every read operation returns either the value written by
the last write that precedes it, or a value written concurrently with this read.

—(3) Ordering (safety 2): If a read operation r precedes a read operation r ′ then r ′
cannot return a value written before the value returned by r .

4.3. NECESSARY CONDITION. We describe in the following our extraction al-
gorithm R: this uses any algorithm A that implements a S-register to emulate the
output of failure detector �S . The emulation is achieved within a distributed vari-
able, denoted by Trust (the local value of Trust at process p is denoted by Trustp).
When a query is invoked by a process p to access the value of failure detector �S
that is emulated, it returns the value of Trustp. Algorithm R ensures that variable
Trust satisfies the completeness and intersection properties of �S .

When executing R, every process p of S is associated with exactly one (p, S)-
register, denoted by Regp: p is the only writer of Regp and all processes of S read
in Regp. Unless it crashes, process p goes through an infinite number of epochs:
1, 2, . . . , k, . . . At every epoch, p performs a write phase and then a read phase.
The goal of these phases is to select a list of processes that are used to update Trustp.
We give a high-level description of these phases as well as their pseudo-code.

(1) Write Phase. Process p periodically initiates the writing in Regp of the current
epoch number k (together with a specific value that we will discuss below).
In turn, this writing (which we denote write(k,*)) triggers the execution of
an instance of algorithm A (implementing Regp). Process p then tracks the
messages it receives on behalf of A in order to select a list of participating
processes denoted by Pp(k). This set is determined by having every process
that receives some message m in the context of write(k,*) from p, tags every
message that causally [Lamport 1978] follows m, with (a) k, (b) p, as well as
with (c) the list of processes from which messages have been received with
those tags. When p terminates write(k,*), it looks at all messages it received
and gathers from those tagged with k the set Pp(k) (to which p also belongs).
There are two important properties of sets Pp(k).
—If there is at least one correct reader, then Pp(k) contains at least one correct

process, for otherwise the value written could disappear and the reader would
not be able to read it. Thus, if p is correct or at least one reader is correct,
then Pp(k) contains at least one correct process.

—Eventually, if p is correct, then there is a k after which every Pp(k) con-
tains only correct processes. This is because, after all faulty processes have
crashed, the processes that participate in new write operations are necessarily
correct.

(2) Read Phase. Every process p maintains the sequence, denoted E p, of par-
ticipating sets Pp(k). Basically, before write(k,*) is performed on Regp,
E p := {Pp(0), Pp(1), Pp(2), . . . , Pp(k − 1)}. E p is also the value written
by process p in Regp together with epoch number k. (Initially, E p contains
exactly one set: the set of all processes �, i.e., we assume that Pp(0) = �.)
After a process p writes E p in Regp, p reads every register Regq written by
every process q in S. Process p then sends (ping, k) messages to all processes
in every set Pq(l) of Eq and waits for at least one ack message for each set

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:14 C. DELPORTE-GALLET ET AL.

FIG. 1. Implementing �S using an open S-register.

Pq(l). Process p then selects all processes that send such an ack message. We
denote this set by Q p(k).

There are also two important properties to highlight here.

—If p is correct, then there is at least one correct reader of all registers and, as
previously pointed out, every Pq(k) contains at least one correct process. So, p
indeed receives a message from one process in every set Eq and does not block
forever. If process p is correct, then it terminates every read phase of every
epoch k and determines a set Q p(k).

—Eventually, if p is correct, then there is an epoch k after which every Q p(k)
contains only correct processes. This is because, after all faulty processes have
crashed, the processes that respond to (ping, k) messages are all correct.

At the end of epoch k, process p updates Trustp with the union of Pp(k − 1) and
Q p(k). We thus have:

—Completeness. If p is correct, then p keeps permanently updating variable Trustp.
Eventually, Trustp contains only correct processes.

—Intersection. In Q p(k), for all processes q in S, there is at least one process of
each set Trustq previously output by process q.

PROOF OF THE NECESSARY CONDITION (EXTRACTING �S FROM ANY S-register
ALGORITHM). We describe here in details the emulation of �S from a S-register
algorithm A. For modularity purposes, we present our algorithm R in two parts.
Figure 1 shows how to emulate variable Trust using a specific open S-register with

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:15

FIG. 2. Tagging for (p, S)-register Regp .

a specification customized to our needs. Then, Figure 2 shows how to implement
this specific open register with any algorithm that implements a S-register in a
message passing system.

The open S-register has a traditional read but a nontraditional write operations.
(The register has one writer so this nontraditional write can be performed by
only one process.) The write has, besides any possible input parameter that the
writer might want to store in the register, a specific input parameter: an integer
that the writer uses to indicate the number of times the write operation has been
invoked, that is, the epoch number. Furthermore, the write returns an output, which
is the list of processes that participated in the write, that is, the processes that
replied to messages sent on behalf of the underlying message passing algorithm A
implementing the register.

We first define here more precisely what participate means. Let w be some write
operation invoked by some writer process p in the white-box (p, S)-register we
consider; wb, respectively, we, denote the beginning event, respectively the termi-
nation event of the write operation w . Let
 be the causality relation of Lamport
[1978]. The set of participants in w , P(w), is the following set of processes:

{q ∈ �|∃e event of q : wb
 e
 we}
The algorithm of Figure 2 tracks and returns the set of participants in every

write(k,*) operation. Let p be the writer of a (p, S)-register Regp and consider
an algorithm A implementing this register (possibly using some failure detector).
We tag every message causally after the beginning of the kth write of Regp and
causally before the beginning of the k + 1th write with a pair (k, L L) where L L is
the list of participants to the kth write.

The following lemma states that the set of processes returned by the algorithm
of Figure 2 at the end of the kth write by process p is indeed the set of processes
that participate in the write. More precisely, let Pp(k) be the value returned by the
algorithm of Figure 2 for the kth write, we have:

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:16 C. DELPORTE-GALLET ET AL.

LEMMA 9. In the algorithm of Figure 2, the set of participants of the kth
terminated write of Regp is the value returned for Pp(k).

PROOF. Let w the kth terminated write of p.

(1) We first show that P(w) ⊆ Pp(k). Let x be any process of P(w). There exists
an event e of x such that wb
 e
 we. Let M1 be the causal chain of messages
from wb to e and M2 be the causal chain from e to we. All messages in M1 or
M2 can only be tagged by (j, ∗) with j ≥ k. As p does not begin the j th write,
with j > k, before the end of the kth write, all messages of M2 are tagged by
(k, ∗). Moreover, an easy induction proves that every message in M2 has tag
(k, K) such that x is in K . As the tags of these messages are in Pp(k), we have
x ∈ Pp(k).

(2) Now we prove that Pp(k) ⊆ P(w). Let x be any process of Pp(k). As only
x can add its identity to the list L L of the tag (k, L L) of a message, any pu
can only receive a message with tag (k, L L) such that x ∈ L L only causally
after that x sends some message with tag (k, M) with x ∈ M . Let e0 be the
event corresponding to the first time x sends a message with tag (k, L L) and
let e1 be the event corresponding to the first time p receives a message with tag
(k, M) for some M with x ∈ M , we have: e0
 e1. Moreover, as x ∈ Pp(k),
the algorithm ensures that e1
 we and then (1) e0
 we.

As only p increments the value of j in tag (j, ∗), and the value of Current
for x can only be set to k when x receives a message with tag (k, ∗). As in e0
the value of Current for x is k, we have: (2) wb
 e0.

From (1) and (2), e0 is an event of x such that wb
 e0
 we. Hence,
x ∈ P(w).

The following lemma states that any set of processes participating to some write
contains at least one correct process.

LEMMA 10. Let w be the kth terminated write of p in some failure pattern F,
if S ∩ correct(F) �= ∅, then Pp(k) ∩ correct(F) �= ∅.

PROOF. Remember that we assume any two different write operations store
two different values. Notice first that p ∈ Pp(k) for all k, hence:

—if p is correct, then the lemma is trivial.
—if p is faulty and all the readers are faulty, then the lemma is also trivial.

In order to obtain a contradiction, assume that, for some terminating write w of
p in register Regp, some run α =< F, C, Sc, T > and some associated failure
detector history H , we have a correct reader, say q, and Pp(k) ∩ correct(F) = ∅.

In the following, we exhibit several runs; all have F as failure pattern and H as
associated failure detector history. They may differ from α by the time at which
processes take steps (we use the fact that the system is asynchronous).

—Run α0. This run is identical to α up to we, and the writer p does not invoke any
write after we. The set of participants in w , Pp(k), is the same in α and α0.

Let v be the value of register Regp before the terminating write w , and v ′ the
value after w (recall that we assume v �= v ′).

Let τe be the time of the event we of α, and consider time τ ≥ τe after which
no more processes crash. Note that, by hypothesis, at time τ all participants of

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:17

w have crashed. For any process x in Pp(k), let bx be the first event of x such
that wb
 bx
 we, and ex be the last event of x such that wb
 ex
 we. In the
following, b−1

x denotes the last event of x before bx .

—Run β. For any process x of Pp(k), β is identical to α0 up to b−1
x , but after b−1

x ,
x does not take any step until time τ . As after time τ , x has crashed, x does not
take any step after b−1

x . The processes of � − Pp(k), in particular q, take steps
exactly as in α0 up to time τ (at the same time, but perhaps the step is not the
same). At time τ , q reads the register Regp and q ends the read at time τ ′. As
w is not in run β, then q reads v in the register.

—Run γ . For any process x of Pp(k), γ is identical to α0 up to ex . After ex , x
does not take any step until time τ . If after bx , x sends a message to a process of
�− Pp(k), the reception of this message is delayed until after time τ ′. Processes
of � − Pp(k) take steps exactly as in β up to time τ ′ (the steps that these
processes take in γ and β are the same steps up to time τ ′). After time τ ′, the
correct processes may receive the pending messages: runs β and γ may then
differ.

In γ , the writer has completed its write operation w . The reader q begins the
read after the end of the write, by the atomicity of the S-register, q reads v ′.

For q, γ and β are indistinguishable. Process q reads v in β, q reads v ′ in γ —a
contradiction.

LEMMA 11. The algorithms of Figure 1 and Figure 2 implement failure detec-
tor �S.

PROOF. Let p be any process in S. Local variable Trustp contains a list of pro-
cesses. We show that this list ensures the completeness and intersection properties
of �S .

In the following, we denote by Tp = Trust1p, . . . , Trustmp , . . . the (finite or infinite)
sequence of values written by p in its variable Trustp (Line 20 of the algorithm of
Figure 1), and we denote by τ 1

p, . . . , τ
m
p , . . . the corresponding sequence of times

at which p updates variable Trustp: more precisely, p writes Trustp for the kth time
at time τ k

p and the value written is Trustkp. By definition, the sequence Tp is also the
sequence of outputs of the emulated failure detector at process p.

If p is correct, then there is at least one correct process in S. By Lemma 10, for
every process q and every integer k, Pq(k) contains at least one correct process.
Line 15, reading Regq , p sets L p with Pq(k) sets. Therefore, at least one of the
processes in these Pq(k) sets answers to the message (ping, ∗) from process p
and process p cannot block on Line 18. Hence, p updates infinitely often variable
Trustp and the sequences Trust1p, . . . Trustmp . . . as well as τ 1

p, . . . , τ
m
p , . . . are infinite

sequences.
Notice that if p is faulty, it can block on Line 18 until it crashes.

(1) We first prove the completeness property of Trust. We need to show that for
every correct process p, there is an integer m such that, for every m ′ > m,
Trustm

′
p contains only correct processes.

Consider the time τ after which all faulty processes have crashed. As p is
correct, then there is some m such that τm

p > τ . Let x be any process that
belongs to Trustm

′
p with m ′ ≥ m + 2. Then:

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:18 C. DELPORTE-GALLET ET AL.

—either x belongs to Pp(m ′ − 1), meaning that x is a correct process by the
very fact that all processes that participate in the write operations beginning
after τ are correct.

—or x answered to some message (ping, m ′) from p, ensuring that x was not
crashed at least until time τm

p .
In both cases, x is correct.

(2) We now show that Trust ensures the intersection property. More precisely, we
prove that, for any two processes p and q, for all k, l such that Trustkp and
Trustlq are both defined, we have: Trustkp ∩ Trustlq �= ∅.
Remark first that, if l = 0 or k = 0, then either Trustlp or Trustkq is the set of
all processes �, as for every process r , Trustr is never empty (Trustr contains
at least r), in this case we have Trustlp ∩ Trustkq �= ∅. Therefore, assume that
l > 0 and k > 0.
Notice the following facts:
—If process p writes E p in its register Regp (Line 11) during the k-th iteration,

then, for all k ′ < k, Pp(k ′) ∈ E p. By construction, the value of E p(Line 11)
for the k-th write of register p is the set of all sets Pp(k ′) for k ′ < k.

—It is clear from Lines 13, 19 and 20 that for every process r every integer m
Pr (m − 1) ⊆ Trustmr .

As each process p writes in its own register Regp, and then reads every register
of all other processes, due to the atomicity of registers, either the kth write of
the register Regq by q is before the lth read of this register by process p, or
the l-write of register Regp is before the kth read of this register by process q.
Assume without loss of generality that p performs its lth read of register Regq

after the kth write of Regq by q. From the algorithm, at least one s ∈ Trustlp
(1) comes from each set of the set of sets Lq read by p in the lth read of Regq ,
and (2) is such that p has received an (l, O K) answer from s. As we assume
that the lth read is after the end of the kth write of Regq by q, we deduce that
at least one s ∈ Trustlp belongs to Pq(k − 1) and, as Pq(k − 1) ⊆ Trustkq , s
belongs to Trustkq , proving the intersection property.

Finally, we get:

LEMMA 12. If failure detector D implements a S-register, then �S
 D.

4.4. SUFFICIENT CONDITION. A special case of a (p, S)-register is a register
that can be read by exactly one process q (the reader) and written by exactly one
process p (called the writer). We call it a (p, q)-register: when S is �, the regis-
ter corresponds to a single-writer/single-reader register in the sense of Lamport
[1986].

In the following, we describe an algorithm that, for any p, q ∈ S, implements
a (p, q)-register using �S . Using the register transformations of Israeli and Li
[1993] and Vitanyi and Awerbuch [1986], we derive the fact that a S-register can
be implemented, using (p, q)-registers for all p, q ∈ S.

Basically, each process maintains the current value of the register. The writer
process tags each write invocation with a unique sequence number, incremented
for every new write invocation. In order to perform its read (respectively, write)
operation, the reader pr (respectively, the writer pw) sends a message to all pro-
cesses and waits until it receives acknowledgments from every process trusted by

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:19

pr (respectively, pw), that is, output by its failure detector module. It is important to
notice that the set of processes trusted by the reader (respectively, the writer) might
change between the time the reader (respectively, the writer) sends its message and
the time it receives acknowledgments. We implicitly assume here that the reader
(respectively, the writer) keeps periodically consulting the list of processes that are
output by its failure detector module (i.e., the trusted processes) and stops waiting
when the reader (respectively, the writer) has received acknowledgments from all
processes in the list.

For every write operation, the writer sends the value to be written with the
associated sequence number to all processes. Each process p stores this value with
its sequence number and sends back an acknowledgment to the writer, unless p
has crashed or has already stored a value with a higher sequence number.

For every read operation, the reader sends a request to read to all. Every process
that does not crash returns an acknowledgment containing the last value written
and the corresponding sequence number. The reader then selects the value with the
largest sequence number among those received from the trusted processes and the
one previously hold by the reader. Finally, the reader updates its own value and
timestamp with the selected value and returns it.

Roughly speaking, the completeness property of �S ensures that, unless it
crashes, the reader (respectively, the writer) does not block waiting forever for
acknowledgments. The intersection property ensures that a reader would not miss
a value that was written.

LEMMA 13. The algorithm of Figure 3 implements a (pw , pr)-register using
�S such that pw , pr ∈ S.

PROOF. We consider one writer, denoted by pw , and one reader, denoted by pr .
In the pseudo-code of Figure 3, we assume that the if...then... statement is atomic.

Remark first that:

—(A). If pw has not terminated its k–th write (after Line 17) then, at all processes,
the value of variable last write is less or equal to k.

Indeed, the last write is updated according to the value obtained from some write
operation. As read/write invocations are sequential on each process, the writer does
not begin its (k + 1)-th write operation before ending its kth one.

Assume that the kth write by pw is for value v . We have:

—(B) When a process writes k in its last write variable (Line 8) the value of its
current variable is v .

From this, we deduce the following:

—(C) If any process sends an (ACK READ, s, v, ∗) message, then v is the value
of the sth write operation.

In particular, (C) implies that for all (ACK READ, s, v, ∗), (ACK READ, s ′, v ′, ∗)
messages: s = s ′ ⇒ v = v ′.

Now we proceed to prove the properties of the (pw , pr)-register:

Termination. Assume by contradiction that pw is correct and that pw invokes but
does not terminate its k–th write operation. This would be possible only if pw waited

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:20 C. DELPORTE-GALLET ET AL.

FIG. 3. Implementation of a (pw , pr)-register using �S with pw , pr ∈ S.

forever in Line 17. From the completeness property of the failure detector, there is
a time τ after which the list M of processes trusted by pw contains only correct
processes. By the properties of the message passing service, every correct process
p eventually receives the (WRITE, ∗, k) message from pw . From (A), p replies
with an (ACK WRITE, k) message and pw eventually receives (ACK WRITE, k)
messages from all processes within M —a contradiction. A similar argument
proves that, unless the reader crashes, every read operation invoked by the reader
always terminates.

Validity. Let R be the j th read operation invoked by the reader, let W be the last
write operation terminated before the beginning of R, and assume that W is the kth
write of the writer. The writer pw terminates this write operation (after Line 17)
after having received (ACK WRITE, k) messages from a set Lw of trusted processes.
When the reader pr terminates its read operation R, pr has received (ACK READ,

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:21

∗, ∗, j) messages from a list Lr of trusted processes. By the intersection property
of the failure detector, at least one process p belongs to both Lw and Lr .

As p sends an (ACK READ, s, ∗, j) message to pr only after having sent an
(ACK WRITE, k) message to pw , then s ≥ k. Hence, let a be the maximum of v in
the (ACK READ, v, ∗, j) messages received by the reader pr for operation R, we
have a ≥ s ≥ k and then: (D) a ≥ k. From (A), the ath write has begun before read
R has terminated, and by (C) the value returned by R is the value of the ath write.

Consider the two following cases:

—The read operation R is not concurrent with any write operation. Hence, from (A),
(ACK READ, x, ∗, j) messages received by pr for R are such that x ≤ k. From
(D), we can deduce that a = k and the value returned by R is the value of write W .

—The read is concurrent with some write. In this case, a ≥ k. The value returned
is either the value of write W or the value of some concurrent write.

In the same way, this proof applies if there is no write before the j th read
operation.

Ordering. Assume that the reader reads x then y and let r x , respectively r y, be
the corresponding values of last write for the reader. From the algorithm, x is the
written value by the r x-th write and y is the written value by the r y-th write. As
last write is nondecreasing, we have r y ≥ r x , hence, pw wrote y after x .

Using the register transformations of Israeli and Li [1993] and Vitanyi and
Awerbuch [1986], we can now derive the fact that S-registers can be implemented
out of (p, q)-registers for all p, q ∈ S. We finally get:

LEMMA 14. There is an algorithm that implements a S-register using �S for
any subset S.

With Lemma 12, we get our complete proof.
The following is then a simple corollary of Proposition 8:

COROLLARY 15. � is the weakest failure detector to implement a register.

5. The Weakest Failure Detector to Implement Consensus

We determine here the weakest failure detector to implement the consensus object
type. Our result applies to all environments, including those where more than half
of the processes might crash, as well as to any consensus object shared by a
subset of processes in the system. We later derive the weakest failure detector to
implement any object type with consensus number k > 1.

5.1. IMPLEMENTING CONSENSUS. The sequential specification of the consen-
sus object stipulates that all propose() operations return one of the values proposed.
For any subset S of processes in the system, we define S-consensus as a con-
sensus object accessible only to the processes of S: the propose() operation of
S-consensus can only be invoked by the processes of S.

In this section, we prove that �S ∗�S is the weakest failure detector to implement
S-consensus. As a direct corollary, � ∗ � is the weakest failure detector to
implement consensus (shared by all the processes in the system �).

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:22 C. DELPORTE-GALLET ET AL.

PROPOSITION 16. �S ∗ �S is the weakest failure detector to implement S-
consensus.

PROOF.
Overview. In order to prove that �S∗�S is the weakest failure detector to implement
S-consensus, we first prove (necessary condition) that, from any implementation
of S-consensus, we can extract both �S and �S and then (sufficient condition)
we exhibit an algorithm that implements S-consensus using �S ∗ �S .

(1) We prove the necessary condition in two steps. We show first how to extract
�S (necessary condition (a)) and then how to extract �S (necessary condition
(b)).
—Proving the first step of the necessary condition (a) goes essentially through

the same steps as the necessary part of the proof of the weakest failure
detector for consensus [Chandra et al. 1996] (i.e., �-consensus). Inter-
estingly the fact that S can be a subset of processes does not fundamentally
change the proof. We will mainly recall the main steps of the proof of
Chandra et al. [1996] and point out some special cases that are sensitive to
our generalization.

—To prove the second step of the necessary condition (b), we use the tra-
ditional fault-tolerant state machine replication approach [Lamport 1998;
Schneider 1986], transforming consensus into the total order broadcast
communication abstraction and implementing any object type, including the
type register.

(2) To prove the sufficient condition, we give an algorithm that implements
S-consensus using �S ∗ �S . The algorithm can be viewed as a variant of
the rotating coordinator algorithm of Chandra and Toueg [1996] where the no-
tion of majority is replaced by �S . As in Chandra and Toueg [1996], processes
are considered coordinators in a round-robin way and they each try to impose
a decision. Eventually, one of the correct processes remains coordinator (the
one output by �S) and succeeds in imposing a decision. Agreement is ensured
because no process decides until it consults a quorum of processes: this is
where �S is used.

Preliminaries. Before diving into our algorithm, we first precise the meaning
of implementing consensus. A correct implementation of a S-consensus object
can be defined through three properties, along the lines of Fischer et al. [1985].

Every process p ∈ S can propose a value to S-consensus and, unless it crashes,
p is supposed to decide a value (i.e., return a value from that invocation) such that:

—Termination (liveness): Every correct process in S eventually decides;
—Agreement (safety 1): For any two processes p and p′ in S, if p decides v and

p′ decides v ′ then v = v ′;
—Validity (safety 2): If any process in S decides a value v , then v is the proposed

value of some process in S.

In the following, we assume, without loss of generality, that if a correct process
invokes some S-consensus object, then all correct processes of S participate to the
implementation of that object. More precisely, we assume that all processes obey
the following procedure. Let A be any algorithm that implements S-consensus.

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:23

When a process p invokes propose() on the object, and p is not already running A,
then p sends a message containing its proposed value to all other processes in S
and p starts running A. When a process q receives such a message from p, if q is
not already running A, then q adopts the value proposal of p as its initial proposal
and sends it to all other processes in S, before q itself runs A. When a decision
is made in A at some process p, either p has invoked propose() and the decided
value by A is the value return by propose(), or the decided value is stored in case
p invokes propose() on the S-consensus object in which case the decision value
is immediately returned.
(Necessary condition (a)) Extracting �S from S-consensus.

LEMMA 17. If there is an implementation of S-consensus using D, then
�S
 D.

PROOF (SKETCH). As we pointed out, we mainly go through the main steps of
the proof of Chandra et al. [1996] and discuss how it generalizes to subsets S.

In Chandra et al. [1996], all correct processes need to eventually output a correct
process p∗. In our case, all processes in S have to output the same correct process p∗.

The way processes in Chandra et al. [1996] eventually locate the same correct
process is by executing an extraction algorithm, which is composed of two parts:
the communication component and the computation component. As we will recall
below, the goal of the communication component is to exchange values of the
underlying failure detector D and build a directed acyclic graph (DAG) of such
values, whereas the goal of the computation component is to use the DAG and
simulate runs of S-consensus that will help extract the correct process p∗. In
our case, processes that are not in S are involved only in the communication
component.

Consider a set S of processes. Let E be any environment, D be any failure
detector that implements S-consensus in E through some algorithm we denote
by ConsensusDS .

Consider any arbitrary run of ConsensusDS using D with failure pattern F ∈ E
and any history HD in D(F).

The processes periodically query their failure detector and exchange information
about the values of HD they see in the run.

Using this information, all processes construct a directed acyclic graph (DAG)
that represents a sampling of failure detector values in HD and some temporal rela-
tionships between the sampled values. By periodically sending the current state of
its DAG to all processes, and by incorporating information from all others processes
into its own DAG, every correct process constructs ever increasing approximations
of one (infinite) limit DAG G.

In the computation component, the DAG G is used to simulate runs of Con-
sensusDS for failure pattern F and failure history H: all these runs could have
occurred for F and HD. These are used to eventually locate the same correct
process p∗.

Consider any initial configuration I of ConsensusDS . The set of simulated sched-
ules of ConsensusDS that are compatible with some path of G and are applicable
to I are organized as a tree. Given S = {q1, . . . , qk}, consider the k + 1 initial
configurations, I j for 0 ≤ j ≤ k such that in I j the initial value of qm is 0 for all
k ≥ m > j and is 1 for all j ≥ m ≥ 1. Let �

Ii
G be the tree of simulated schedules

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:24 C. DELPORTE-GALLET ET AL.

with initial configuration Ii . And let �G be the forest of all these trees.
The main point is that, from �G , it is possible for the correct processes of S to

extract the identity of a correct process, say p∗. To do so, each vertex of every tree
of �G is tagged with 0 and 1: A vertex V is tagged with k if and only if it has a
descendant V ′ such that some process in S has decided k in V ′. As all processes
(correct or faulty) that decide, decide on the same value, we can take the decision
value of any process in S. �i denotes the tagged tree �

Ii
G . Remark that a vertex

is either tagged with {1} or {0} or {1, 0}. In the first case, the vertex is said to be
1-valent, in the second 0-valent and in the third case bivalent.

By the validity property of S-consensus, the root of �0 is 0-valent and the root
of �k is 1-valent. By an easy induction, there exists an index i such that either the
root of �i is bivalent, or the root of �i−1 is 0-valent and the root of �i is 1-valent.
In the second case, it is proved [Chandra et al. 1996] that qi is the correct process
p∗.

In the first case, locating p∗ is more complicated. In Chandra et al. [1996], it is
shown that �i contains a special subtree, named a decision gadget. Intuitively, in a
decision gadget, the step of a particular process is crucial. The first process to be
involved in such a gadget is p∗.

From a bivalent vertex, one of its step, directly or indirectly, leads to a 0-valent
vertex and another step to a 1-valent vertex. This process is necessarily a correct
process. Notice that the decision gadget is in a finite subgraph of �G .

Each process in S tries to extract p∗. But since the limit of its forest over time
is �G , and the information necessary to select p∗ is in a finite subgraph of �G ,
eventually the process will keep forever selecting the same correct process p∗.

(Necessary condition (b)) Extracting �S from S-consensus.

LEMMA 18. If there is an implementation of S-consensus using D, then
�S
 D.

PROOF. Let X be any algorithm implementing S-consensus using failure
detector D. With X , we can implement [Hadzilacos and Toueg 1993] a total order
broadcast abstraction [Aguilera et al. 2000] that is restricted to S. We first recall
the specification of this abstraction in terms of the primitives S-ABroadcast and
S-ADeliver:

—Validity: If a correct process in S S-ABroadcasts a message m, then it eventually
S-Adelivers m.

—Uniform Agreement: If a process in S S-ADelivers a message m, then all correct
processes in S eventually S-Adeliver m.

—Uniform Integrity: For every message m, every process in S S-ADelivers m at
most once, and only if m was previously S-ABroadcast by some process in S.

—Uniform Total Order: If some process in S-ADelivers a message m before a
message m ′ then no process in S S-ADelivers m ′ before it S-ADelivered m.

With this abstraction, the algorithm of Figure 4 implements a S-Register. The
proof is straightforward. Hence, by Lemma 12, �S can be implemented and we get
�S
 D.

(Sufficient condition) Implementing S-consensus with �S ∗ �S. The algorithm
of Figure 5 implements S-consensus using failure detector �S ∗ �S . The idea

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:25

FIG. 4. Implementation of a S-Register from total order broadcast.

of the algorithm is the following. Processes are promoted coordinators in a round-
robin way and they each try to impose a decision. These coordinators do not need
to be in S.

The key to ensuring agreement is for the coordinator process to always propose
for decision a value adopted by a quorum of processes output by �S , and only
impose the decision if a quorum of processes output by �S adopts that value (not
necessarily the same quorum). Note that the processes in a quorum do not need to
be in S. Eventually, one of the processes remains coordinator (the one output by
�S) and succeeds in imposing a decision.

When proving the correctness of our algorithm, and for convenience purposes,
for any process p, we will say that p suspects q by �S if the output of �S is not q.

LEMMA 19. The algorithm of Figure 5 implements S-consensus using �S ∗
�S for every subset S of �.

PROOF. To prove this lemma, we go through intermediate lemmas:

LEMMA 20.

(1) If p and q execute Line 15 to 20 of a round r, then:
(1.1) if estFromCp = x for some x �= ⊥ then estFromCq ∈ {⊥, x},

(2) If p and q end Line 23 of a round r, then:
(2.1) either L p = {⊥} or L p = {x} or L p = {⊥, x} for some x �= ⊥;
(2.2) if L p = {x} for some x �= ⊥ then Lq = {x} or Lq = {⊥, x},
(2.3) if L p = {⊥, x} for some x �= ⊥ then Lq = {x} or Lq = {⊥, x} or
Lq = {⊥}.

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:26 C. DELPORTE-GALLET ET AL.

FIG. 5. Round based S-consensus algorithm using �S and �S .

PROOF.
(1.1): Notice first that for any process q, vq is always a value proposed by some

process and obviously vq �= ⊥.
If estFromCp = x for some x �= ⊥, then p has received one message (ONE, x, r)

from the coordinator p1+r mod n . By the algorithm, the coordinator p1+r mod n sends
only one message (ONE, ∗, r) per round to all processes in S. Either q suspects the
coordinator by �S and then estFromCq = ⊥, or q does not suspect the coordinator
by �S and waits for message ONE, and then estFromCq = x .

(2.1): The algorithm ensures that all values in L p come from estFromCq values,
hence (2.1) is a direct consequence of (1.1).

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:27

(2.2) and (2.3): If L p = {⊥, x} or L p = {x}, then at least one process of S, say
u, ends the first part (Lines 15 to 20) of round r , and estFromCu = x . By (1.1), at
most two values, ⊥ and x , are sent by processes of S to all processes in Line 21.
A process sends (TWO, a, r) to all processes in S if it has received a message
(STORE, a, r) from some process of S. Then, a = x or a = ⊥. Hence, for any
process q that ends round r either Lq = {x} or Lq = {⊥, x} or Lq = {⊥}. This
concludes the proof of (2.3). For (2.2), it remains to show that Lq �= {⊥}.

By the intersection property of �S , there is at least one process s output by �p
and �q . The algorithm ensures that s sends at most one message (TWO, ∗, ∗) per
round. Then, s sends message (TWO, y, r) with either y = ⊥ or y = x . As we
assume L p = {x}, then y equals to x , proving that x belongs to Lq ; by (2.1), this
proves (2.3).

LEMMA 21. If all processes p of S, that start the round r, start round r with
the same value d for v p, then every process p of S ending round r either decides d
or has v p = d at the end of this round.

PROOF. Let r be such a round, then all (COORD, x, r) messages are such that
x = d. Hence, every (ONE, x, r) message is such that x = d. From the previous
lemma, every process p ending round r ends this round either with {⊥} and does
not change its v p or with L p = {d} and decides d or with L p = {d, ⊥} and sets v p
to d.

LEMMA 22. The algorithm of Figure 5 ensures agreement.

PROOF. It is impossible for all processes to decide by Task 2. Hence at least
one process decides by Task 1. Consider the first round r in which a process, say p,
of S sends a (DECIDE, ∗) message in Task 1. Let (DECIDE, d) be this message.
In this round, after Line 23, L p is {d}. Let q be any other process ending round r .
By Lemma 20, in this round, Lq is either {d} and q decides in round r , or Lq is
{d, ⊥} and q ends round r with v = d.

By Lemma 21 and an easy induction, in every round r ′ ≥ r , every process in S
either decides d or ends the round with v = d. Hence, all processes which decide in
Task 1 decide d. If a process decides in Task 2 then, by an easy induction, this deci-
sion is issued from a process which decided in Task 1. This proves agreement.

LEMMA 23. The algorithm of Figure 5 ensures validity.

PROOF. By the algorithm, the processes of � − S send the values they have
just received and they never insert in the algorithm a value of their own.

LEMMA 24. The algorithm of Figure 5 ensures termination.

PROOF. Assume by contradiction that no correct process decides. This means
that no correct process decides by Task 2. The completeness property of �S ∗ �S
ensures that no process waits forever in Lines 16 and 22; hence every correct
process terminates round r for all r .

By the property of �S , there is a time τ after which (1) all faulty processes have
crashed and (2) the failure detectors of all correct processes of S output forever the
same correct process, say pl .

Consider the set of rounds R in which the correct processes of S reach τ and let
r be the greatest element of R. Let r0 be the first round number greater than r in

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:28 C. DELPORTE-GALLET ET AL.

which pl is the coordinator (pl = 1 + r0 mod n). When the processes of S are in
round r0, they do not suspect coordinator pl of round r0 by �S . Then, the processes
adopt for estFromC the value sent by pl . And so their L is reduced to one element
which is different from ⊥ and they decide – a contradiction.

This concludes the proof of Lemma 19.

By Lemma 19, �S ∗�S implements S-consensus. Consider any failure detector
D that implements S-consensus. By Lemma 18, �S
 D. By Lemma 17, �S
 D
and then �S ∗ �S
 D. This concludes the proof of Proposition 16.

As a direct corollary, we get:

COROLLARY 25. � ∗ � is the weakest failure detector to implement consen-
sus.

We directly get from Corollaries 7 and 2 and Proposition 16 the following:

COROLLARY 26. For every k such that 2 ≤ k ≤ n, for any failure detector
D, D implements consensus if and only if D implements S-consensus for all S
such that |S| = k.

5.2. IMPLEMENTING OTHER OBJECT TYPES. In the following, we say that types
T1, . . . , Tn emulate k-consensus if there is an implementation of S-consensus
using only T1, . . . , Tn for any subset S of k processes in �.

PROPOSITION 27. If a type T emulates 2-consensus, then (1) the weakest
failure detector to implement T is �∗� and (2) any failure detector that implements
T implements any type.

PROOF. Let T be any type emulating 2-consensus. This means that there is
an algorithm using T that implements 2-consensus (i.e., consensus among any
pair of processes). Clearly, this algorithm with any failure detector D implementing
T implements 2-consensus too and, by Corollary 26, it implements consensus.
Then, by Proposition 16 we get: (a) � ∗ �
 D.

Remark that � ∗� implements any number of instances of consensus. Hence,
using the universality result of consensus [Herlihy 1991], we derive that � ∗ �
implements any type. Then by (a) any failure detector that implements T imple-
ments any type proving (2). Moreover, as �∗� implements any type, it implements
in particular T . Together with (a), this proves (1).

An interesting application of Proposition 27 concerns the notion of consensus
number, as we discuss below.

In fact, several definitions of the notion of consensus number of a type T
(sometimes also called consensus power) have been be considered [Jayanti 1993].
All are based on the maximum number k of processes for which there is an
algorithm that, using T , emulates k-consensus. The definitions differ on whether
or not the implementation can use several instances of T , and whether the type
register can also be used. Notation h1 means one instance and no register, hr

1
means one instance and several registers, hm means many instances, no register,

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:29

FIG. 6. Implementing �S with a majority of correct processes.

and hr
m means many instances and many registers.1

From Proposition 27, the weakest failure detector to implement type T such that
h1(T) = 2 or hm(T) = 2 is � ∗ �. If T is deterministic, we can derive from Bazzi
et al. [1997] that hm(T) = hr

m(T). Hence, we get the following result:

PROPOSITION 28. For every k such that 2 ≤ k ≤ n, �∗� is the weakest failure
detector to implement (1) any type T such that k = h1(T), (1’) any type T such
that k = hm(T), (2) any deterministic type T such that k = hr

1(T), and (2’) any
deterministic type T such that k = hr

m(T).

6. Failure Detectors Comparisons

In this section, we compare failure detectors �S and �S . We assume that S contains
at least two processes for, otherwise, the failure detectors are trivial. We show that,
in a system of at least three processes with a majority of correct processes �S is
strictly weaker than �S . Without the majority assumption, but still in a system of
at least three processes, the two failure detectors are incomparable. In a system of
two processes, the two failure detectors are equivalent.

Consider first a system with a majority of correct processes: that is, consider en-
vironment Et with t ≤ (n−1)/2. In this case, �S can directly be implemented using
the algorithm of Figure 6 (without any failure detector). In this algorithm, for each
round r , each correct process p ∈ S is ensured to receive (ARE YOU ALIVE, r)
messages from a majority of processes. The completeness and intersection prop-
erties of �S follow directly from the algorithm of Figure 6 and the majority
assumption.

1 We implicitly assume here n-ported types, that is, every instance of a type has n ports in our system
of n processes [Jayanti 1993].

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:30 C. DELPORTE-GALLET ET AL.

We have:

PROPOSITION 29. If n > 2, (1) �S ∗ �S is strictly stronger than �S in every
environment Et with t > 0 and (2) �S ∗ �S is strictly stronger than �S in every
environment Et with t > (n − 1)/2.

PROOF. For any pair of failure detectors (A, B) A ∗ B is stronger than A and
stronger than B. In particular, �S ∗ �S is stronger than �S and stronger than �S .
We thus need to show that there is no algorithm that implements �S ∗ �S using
solely �S nor �S .

Assume by contradiction that there is an algorithm that can use only �S to
implement �S ∗ �S in environment Et . Note that this algorithm would induce an
algorithm that can use �S to implement �S ∗ �S in environment E1, the set of
failure patterns with at most one faulty process. In environment E1, if the number
of processes is greater than 2, we have a majority of correct processes and �S
can be implemented without any failure detector. This means �S ∗ �S can be
implemented in E1 without any failure detector. By Proposition 16, S-consensus
would then be implementable without any failure detector. But if S contains more
than one process and if at most one process can crash, with S-consensus it is easy
to implement consensus for t = 1: processes in S send the decision value to all
and processes outside S decide this value. We then get a contradiction with Fischer
et al. [1985].

We prove now that no algorithm can use only �S to implement �S ∗ �S in
environments Et with t > (n − 1)/2. Assume by contradiction that such algorithm
exists. By Proposition 16, S-consensus would be implementable with only failure
detector �S . But this contradicts the following Lemma:

LEMMA 30. There is no S-consensus algorithm with �S in any environment
Et with t > (n − 1)/2.

PROOF OF LEMMA. We use the same partitioning technique as in Chandra and
Toueg [1996]. Let by contradiction A be a S-consensus algorithm with �S for
such environments. Let A and B be any disjoint subsets of � such that A and B
contains each at least one process in S and the cardinalities of A and B are less
than or equal to �n/2�. Note that in this case, t is greater or equal to �n/2� and
then all processes not in A or not in B may crash.

Consider run αA in which all processes have initial value 0, all processes in A
are correct, all other processes are initially crashed and let time tA be the time at
which all processes in A ∩ S decide (this decision is 0).

Consider run αB in which all processes have initial value 1, all processes in B
are correct, all other processes are initially crashed and let time tB be the time at
which all processes in B ∩ S decide (this decision is 1).

Consider run α in which (1) all processes in A and in B are correct, (2) all
processes in A have 0 as initial value, (3) all processes in B have 1 as initial value,
(4) the output of failure detector � is the same as in αA for processes in A up
to time tA and as in αB for processes in B up to time tB , (5) the reception of all
messages from processes in A to processes in B and the reception of all messages
from processes in B to processes in A are delayed until after time max(tA, tB), (6)
up to time max(tA, tB) processes in A, respectively in B, take steps at the same
times as in αA, respectively as in αB .

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

Tight Failure Detection Bounds on Atomic Object Implementations 22:31

Run α is indistinguishable from αA to processes in A ∩ S and then processes in
A ∩ S decide 0 in α. In the same way, however, α is indistinguishable from αB for
processes in B ∩ S and then processes in B ∩ S decide 1 in α, contradicting the
agreement property.

COROLLARY 31. For n > 2, in environments Et with 0 < t < (n − 1)/2, �S
is strictly stronger than �S and in environments Et with t ≥ (n − 1)/2 �S and �S
are incomparable.

The n > 2 hypothesis is crucial in the proof above. Maybe surprisingly, in a
system of 2 processes, � ∗� and � are equivalent. To prove this, we go through an
intermediate failure detector: the Strong failure detector (S) introduced in Chandra
et al. [1996] and Chandra and Toueg [1996]. (S) ensures strong completeness, that
is, eventually every process that crashes is permanently suspected by every correct
process, and weak accuracy, that is, some correct process is never suspected. This
failure detector and MP implements consensus whatever the number of faulty
processes. Furthermore, as shown in Chandra et al. [1996] and Chandra and Toueg
[1996], S is stronger than �.

PROPOSITION 32. For n = 2, S ≡ �.

PROOF.

(1) �
 S: By definition, S ensures strong completeness and some correct process
is never suspected. Hence, S ensures the intersection property. Then, �
 S.

(2) S
 �: Denote by p1 and p2 the two processes of the system. Consider any
failure pattern F . If no process crashes in F , then by the intersection property
of �, one correct process is trusted forever by p1 and p2. If some process, say
p1, crashes, then by the completeness property of �, after some time τ , p2 is
the only process trusted by p2. By the intersection property of �, p2 has been
trusted forever by p1 and p2. Therefore, in all cases, at least one correct process
is never suspected. This proves the accuracy property of S. By definition, �
ensures strong completeness. Hence, S
 �.

The following holds in any environment and is a direct corollary of the propo-
sition above and the fact that �
 S [Chandra et al. 1996; Chandra and Toueg
1996]:

COROLLARY 33. For n = 2, � ≡ � ∗ �.

7. Concluding Remarks

We show in this article that the information about failures that is necessary and
sufficient to implement types like queue and test-and-set, is the same as the
information that is necessary and sufficient to implement types like compare-and-
swap and consensus. All these types are in a precise sense equivalent, according
to the information about failures needed to implement them. We show however
that, according to this metric, these types are strictly harder to implement than the
basic register type in a system of at least three processes. Maybe surprisingly, in
a system of two processes, we prove that the necessary and sufficient information
about failures to implement a register is the same as that necessary and sufficient to
implement consensus. This contrasts with the fact that there is no asynchronous

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

22:32 C. DELPORTE-GALLET ET AL.

algorithm that implements consensus using registers even in a system of two
processes [Loui and Abu-Amara 1987].

ACKNOWLEDGMENT. Comments from Partha Dutta, Petr Kouznetsov, Nancy
Lynch, Bastian Pochon, Michel Raynal and the reviewers helped improve the
presentation of this article.

REFERENCES

AGUILERA, M., DELPORTE-GALLET, C., FAUCONNIER, H., AND TOUEG, S. 2000. Thrifty generic broad-
cast. In Proceedings of the 14th International Symposium on Distributed Computing. Lecture Notes in
Computer Science, vol. 1914. Springer-Verlag, Berlin, Germany, 268–283.

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. 1995. Sharing memory robustly in message passing systems.
J. ACM 42, 2 (Jan.), 124–142.

ATTIYA, H., AND WELCH, J. 1998. Distributed Computing. Fundamentals, Simulations, and Advanced
Topics. McGraw-Hill, New York.

BAZZI, R. A., NEIGER, G., AND PETERSON, G. L. 1997. On the use of registers in achieving wait-free
consensus. Distrib. Comput. 10, 3, 117–127.

CHANDRA, T. D., HADZILACOS, V., AND TOUEG, S. 1996. The weakest failure detector for solving
consensus. J. ACM 43, 4 (July), 685–722.

CHANDRA, T. D., AND TOUEG, S. 1996. Unreliable failure detectors for reliable distributed systems. J.
ACM 43, 2 (Mar.), 225–267.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed consensus with
one faulty process. J. ACM 32, 2 (Apr.), 374–382.

HADZILACOS, V., AND TOUEG, S. 1993. Fault-tolerant broadcasts and related problems. In Distributed
Systems. Addison-Wesley, Reading, MA, Chapter 5, 97–145.

HERLIHY, M., AND WING, J. M. 1990. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12, 3, 463–492.

HERLIHY, M. P. 1991. Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13, 1 (Jan.), 123–
149.

ISRAELI, A., AND LI, M. 1993. Bounded time-stamps. Distrib. Comput. 6, 4 (July), 205–209.
JAYANTI, P. 1993. On the robustness of Herlihy’s hierarchy. In Proceedings of the 12th ACM Symposium

on Principles of Distributed Computing. ACM, New York, 145–157.
LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7

(July), 558–565.
LAMPORT, L. 1986. On interprocess communication; part I and II. Distrib. Comput. 1, 2, 77–101.
LAMPORT, L. 1998. The Part-Time parliament. ACM Trans. Comput. Syst. 16, 2 (May), 133–169.
LOUI, M., AND ABU-AMARA, H. 1987. Memory requirements for agreement among unreliable asyn-

chronous processes. Adv. Comput. Res. 4, 163–183.
SCHNEIDER, F. 1986. The state machine approach: A tutorial. In Fault-Tolerant Distributed Computing.

Lecture Notes in Computer Science, vol. 448. Springer-Verlag, Berlin, Germany, 18–41.
VITANYI, P., AND AWERBUCH, B. 1986. Atomic shared register access by asynchronous hardware. In

Proceedings of the IEEE Symposium om Foundations of Computer Science. IEEE Computer Society
Press, Los Alamitos, CA, 233–243.

RECEIVED NOVEMBER 2005; REVISED AUGUST 2008; ACCEPTED DECEMBER 2009

Journal of the ACM, Vol. 57, No. 4, Article 22, Publication date: April 2010.

