
On the Searchability of Small-World Networks
with Arbitrary Underlying Structure∗

Pierre Fraigniaud
CNRS and Univ. Paris Diderot

Paris, France
pierre.fraigniaud@liafa.jussieu.fr

George Giakkoupis
CNRS and Univ. Paris Diderot

Paris, France
ggiak@liafa.jussieu.fr

ABSTRACT
Revisiting the “small-world” experiments of the ’60s, Klein-
berg observed that individuals are very effective at con-
structing short chains of acquaintances between any two
people, and he proposed a mathematical model of this phe-
nomenon. In this model, individuals are the nodes of a base
graph, the square grid, capturing the underlying structure
of the social network; and this base graph is augmented
with additional edges from each node to a few long-range
contacts of this node, chosen according to some natural
distance-based distribution. In this augmented graph, a
greedy search algorithm takes only a polylogarithmic num-
ber of steps in the graph size. Following this work, sev-
eral papers investigated the correlations between underlying
structure and long-range connections that yield efficient de-
centralized search, generalizing Kleinberg’s results to broad
classes of underlying structures, such as metrics of bounded
doubling dimension, and minor-excluding graphs.

We focus on the case of arbitrary base graphs. We show
that for a simple long-range contact distribution consistent
with empirical observations on social networks, a slight vari-
ation of greedy search, where the next hop is to a distant
node only if it yields sufficient progress towards the target,
requires no(1) steps, where n is the number of nodes. Pre-
cisely, the expected number of steps for any source–target

pair is at most 2(log n)1/2+o(1)

. This bound almost matches

the best known lower bound of Ω(2
√

logn) steps, which ap-
plies to a general class of search algorithms. In the context
of social networks, our result could be interpreted as: indi-
viduals may well be able to construct short chains between
people regardless of the underlying structure of the social
network.

∗Research supported in part by the ANR projects AL-
ADDIN and PROSE, and by the INRIA project GANG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Rout-
ing and layout; E.1 [Data Structures]: Graphs and net-
works; G.2.2 [Graph Theory]: Graph algorithms, Network
problems; C.2.2 [Network Protocols]: Routing protocols

General Terms
Algorithms, Performance, Theory

Keywords
small worlds, decentralized search, social networks

1. INTRODUCTION
Small worlds have been an active research topic in many

fields, including sociology, physics, and computer science.
The scientific interest in small worlds began with the famous
experiments conducted in the 1960s by sociologist S. Mil-
gram [17]. These experiments quantified the small-world
phenomenon, that is, the principle that all people are linked
by short chains of acquaintances. Milgram’s findings were
subsequently confirmed by others (see, e.g., [3]). Revisiting
Milgram’s experiments, J. Kleinberg [9] observed another
striking aspect of the small-world phenomenon: not only
do short chains between people exist, but individuals are
collectively very effective at finding them, using only local
information. He then proposed a mathematical graph model
for studying this aspect of small worlds (extending a model
proposed in [19]). In the small-world model of [9], individ-
uals are the nodes of a two-dimensional n × n grid graph,
which is augmented with some additional long-range edges
as follows. From each node u, one directed edge is added to
some other node chosen at random, such that each node v is
chosen with probability proportional to d−α

u,v, where du,v is
the grid distance between u and v, and α ≥ 0 is a parameter
of the model. The edges of the augmented grid represent
acquaintance relationships between people. Intuitively, the
grid captures the underlying structure of the social network,
defining a notion of distance between people (modeling, e.g.,
geographical distance). In this model, Kleinberg showed
that if α 6= 2 then any search algorithm that does not know
the long-range edges of the nodes that have not been visited
yet, requires an expected number of Ω(nγ) steps, for most
source–target pairs, where γ > 0 depends on α but not on n.
However, if α = 2 then the simple greedy search algorithm
(where greediness is with respect to the grid distance) per-

forms in no(1) steps. Precisely, for any source–target pair,
greedy search takes an expected number of O(log2 n) steps.1

Following [9], several papers explored further the correla-
tions between underlying structure and long-range connec-
tions that yield efficiently-searchable small-world networks.
Specifically, general models in which the results of [9] carry
over have been proposed [1, 4, 5, 10, 15, 16, 18], and var-
ious non-greedy decentralized search algorithms have been
studied [7, 12, 14, 15]. We consider a general framework
for studying search in small worlds, which naturally extends
the model in [9], and captures many of the models proposed
in the follow-up work. In this framework, we show that for
any underlying structure, we can construct a small-world
network where search takes no(1) steps. Specifically, this
framework models a small world by a random graph, where
nodes are individuals, and edges denote acquaintance rela-
tionships, as in [9]. It consists of three components:

• Base graph: It is a connected undirected graph G on the
set of individuals. For any nodes u, v of G, their shortest-
path distance in G, denoted by du,v, represents the dis-
tance between individuals u and v in the social network.
This distance may capture various notions of proximity,
such as geographic proximity, and/or similarity in occu-
pation, culture, hobbies, etc. The neighbors of u in G,
i.e., all v such that du,v = 1, are u’s acquaintances with a
profile most similar to that of u, and they are called the
local contacts of u.2 In this paper we will assume that
G can be arbitrary; so, no extra assumptions about the
underlying structure of the social network are imposed.

• Augmentation scheme: It is a collection {ϕu : u ∈ V (G)}
of probability distributions over the set of nodes V (G)
of G. The graph G is augmented with additional edges
as follows: from each node u, one directed edge is added
to a node chosen independently at random according to
ϕu. This node is an acquaintance of u with, possibly, a
very different profile than u’s, and it is called the long-
range contact of u.3 We will use a simple and natural
augmentation scheme, where ϕu depends on the “density”
of G around u.

• Search algorithm: It is a decentralized algorithm that
computes a path in the augmented graph from any source
to any target, using only local information. More pre-
cisely, the decisions of the algorithm may depend on G
and on the long-range contacts of the nodes visited so
far, but not on the long-range contacts of nodes that have
not been visited yet. We will consider a simple search
algorithm, where the next hop is chosen based only on
the current node’s distance to its neighbors (in G), and
on their distance to the target. A prominent example of
such an algorithm is greedy search, where the next hop is
to the neighbor of the current node that is closest to the
target (in G).

1Note that paths of polylogarithmic length exist between
nodes for a wide range of exponents α [16]; however, they
can be efficiently discovered by a decentralized algorithm
only when α = 2.
2We could define the local contacts of u as all nodes with
du,v ≤ k, for some constant k ≥ 1; however, this would not
affect the asymptotic behavior of the model.
3Again, having a constant number k ≥ 1 of long-range con-
tacts per node would not essentially affect the model’s be-
havior.

As mentioned earlier, a significant amount of work has fo-
cused on extending the results of [9] to underlying structures
other than the grid. In fact, there has been an effort to iden-
tify the most general setting in which the results of [9] carry
over. One motivation for that has been the observation that
certain measures of social proximity, such as occupation, are
not successfully captured by a grid-based model. Moreover,
the underlying structure of a social network often results
from the combination of several different measures of prox-
imity. Therefore, it is highly unclear how this underlying
structure should look.

The results of [9] were extended by [10] into hierarchical
models, where the nodes are the leaves of a complete b-ary
tree, and the distance between them is the length of the path
between them in the tree. Also, [10] proposed a model gen-
eralizing both the grid-based and the hierarchical models,
where the distance function is induced by certain families
of node sets. Small-world networks with grid-like underly-
ing structure were studied in [15, 16], where the diameter of
these networks was computed. In [4], small-world networks
where the base graph has a “bounded growth rate” property
were considered. In [5], base graphs of bounded tree-width
were studied. The case where the nodes are embedded in a
metric space of bounded doubling dimension (instead of a
base graph) was considered in [18]. Finally, weighted base
graphs that exclude a fixed minor were studied in [1]. In
all these cases, for suitable augmentation schemes, greedy
search performs in a polylogarithmic expected number of
steps, as a function of the number of nodes. (In [1] and
[18], the expected number of steps is also a polylogarithmic
function of the aspect ratio, i.e., the ratio of the largest to
the smallest distance between nodes.)

For the case of arbitrary base graphs, the following re-
sults are known. An infinite family of graphs was described
in [8], such that for any n-node base graph from this fam-
ily, and any augmentation scheme, greedy search requires an

expected number of Ω(2
√

log n) steps, for some source–target
pair. On the upper-bound side, a universal augmentation
scheme was proposed in [6], such that for any n-node base
graph augmented according to this scheme, the expected
number of steps for greedy search is Õ(n1/3).

Several non-greedy decentralized search algorithms have
been suggested for grid-based small-world networks [7, 12,
14, 15]. Roughly speaking, all these algorithms construct
shorter paths than greedy search, but they visit (or “con-
sult”) an additional, small number of nodes before the next
hop is decided. Finally, there is work on lower-bounds on
the performance of greedy search in grid-based small-world
networks for arbitrary augmentation schemes (see, e.g., [2]).

For more background on search in small-world networks,
see the survey [11].

1.1 Our contribution
In this paper, we show that for any base graph, there ex-

ists a simple, natural augmentation scheme, and a simple,
natural search algorithm such that search in the augmented
base graph takes no(1) steps. Precisely, the expected number

of steps for any source–target pair is at most 2(log n)1/2+o(1)

.

This bound almost matches the lower bound of Ω(2
√

log n)
steps of [8], which applies to any search algorithm that de-
creases the distance to the target in each step (see Theo-
rem 2, in Section 2.3).

The augmentation scheme we consider is the one where

the probability ϕu(v) that node v 6= u is the long-range
contact of node u is inversely proportional to the size of
the smallest ball in the base graph that is centered at u
and contains v. This scheme is inspired by the experimen-
tal observation of [13] that two-thirds of the friendships are
geographically distributed as follows: the probability of be-
friending a particular person is inversely proportional to the
number of closer people. This augmentation scheme is also
a natural generalization to arbitrary graphs of the augmen-
tation scheme with α = 2 proposed in [9] for the grid.

Our search algorithm is a slight variation of greedy search,
where the next hop may be to a distant neighbor of the
current node only if this hop results in sufficient progress
towards the target. Quantitatively, from the current node
u, search moves to the node that is closest to the target t,
among all the neighbors v of u for which the ratio of the
“benefit” β(u, v, t) = du,t − dv,t of moving to v, over the
distance du,v, is larger than some small threshold:

β(u, v, t)/du,v ≥ 1/ polylog β(u, v, t).

(If this condition is replaced by β(u, v, t)/du,v > 0 then we
obtain the standard greedy search.) This algorithm has a
natural interpretation in the context of Milgram’s experi-
ments [17]: people make greedy choices, but are reluctant
to forward the letter to an acquaintance located far away,
unless they are sure this acquaintance is sufficiently closer
to the target. This reluctance may result from the fact that
people can only approximate the distances between their ac-
quaintances and the target, and, typically, the further the
acquaintance resides, the worse this approximation is.

In the context of social networks, our result could be in-
terpreted as follows: individuals may well be able to con-
struct short chains between people regardless of the under-
lying structure of the social network.

1.2 Comparison with previous work
All previous work except [6, 8] has focused on achieving

polylogarithmic search performance, but for restricted un-
derlying structures. In contrast, we assume that the un-
derlying structure is a graph, but we impose no restric-
tions on the structure of this graph. In this general set-
ting, the lower bound of [8] precludes achieving polyloga-

rithmic search. Still, search in an n-node network in no(1)

steps could also be regarded as “efficient search.” In [1], a
weighted graph is used as a base graph. Our result can be
extended to this case as well (see Section 3.3.5). In [18], a
metric space of bounded doubling dimension is considered
instead of a base graph. The concept of underlying met-
ric is more general than that of base graph, and our result
cannot be extend to arbitrary underlying metrics. Indeed,
although a metric space can be seen as a weighted graph
that induces a shortest-path metric, the edges of this graph
are not necessarily present in the small-world network, un-
like in the base graph approach. For our analysis to apply to
an underlying metric, a condition that ensures that search
can always make progress towards the target is necessary.
In [18], this is achieved by combining the bounding dou-
bling dimension condition, with a sufficiently large number
of long-range contacts per node.

Our proof diverges significantly from the approach typ-
ically used in previous work. The standard approach has
been to bound the number of steps until either the distance
to the target is halved, or the size of the ball around the

target containing the current node is halved. The target is
then reached in a logarithmic number of such halvings. For
the underlying structures that have been studied in previ-
ous work, this halving can be achieved in a polylogarithmic
number of steps, because, intuitively, for any target, the
long-range links that facilitate progress towards this target
are frequent enough. This approach, however, does not work
for arbitrary base graphs, essentially, because the “dimen-
sionality” of the graph may be so large that for some des-
tinations the useful long-range links are very rare (see [8]).
In our approach, instead of evaluating progress in terms of
big jumps, we focus on making progress “locally.” Essen-
tially, we recursively divide the search into smaller search
subproblems, where in each subproblem either the distance
between the source and the target is smaller, or the size of
the part of the graph we focus on is smaller. To make this
approach work we had to modify greedy search such that
no long jumps with very small benefit are allowed, because
such jumps could waste effort devoted to making progress
locally, e.g., to overcoming a very dense part of the graph.

2. MODEL AND STATEMENT OF MAIN
RESULT

In this section, we describe our augmentation scheme and
search algorithm, and we state our main result.

2.1 Augmentation scheme
Recall that du,v is the distance between the nodes u and v

in the base graph G. We consider the augmentation scheme
where the probability ϕu(v) that v is the long-range contact
of u is proportional to the rank of du,v among the distances
from u to all the other nodes; this scheme is called rank-based
augmentation. Precisely, let Bu(r) = {v ∈ V (G) : du,v ≤ r}
be the ball of radius ⌊r⌋ centered at u. (Bu(r) = ∅, if r < 0.)
In the rank-based augmentation scheme, for any nodes u, v
with v 6= u,

ϕu(v) =
1

νu · |Bu(du,v)|
, where νu =

∑

w 6=u

1

|Bu(du,w)|
.

The normalizing factor νu is within the range:

1− 1

n
≤ νu ≤

n
∑

i=2

1

i
≤ lnn. (2.1)

The lower bound for νu follows from the fact that, for all
v 6= u, |Bu(du,v)| ≤ n. The upper bound follows from the
fact that if v1, v2, . . . , vn−1 is an ordering of all the nodes
excluding u, such that du,v1 ≤ du,v2 ≤ · · · ≤ du,vn−1 , then
|Bu(du,vi)| ≥ i+ 1.

2.2 Search algorithm
Let Nu denote the set of all neighbors of node u in the

augmented graph, i.e., Nu consists of the neighbors of u inG,
plus the long-range contact of u. In greedy search for target
t, the next hop from node u 6= t is to a node v ∈ Nu that
minimizes the remaining distance dv,t to t, or, equivalently,
that maximizes the benefit

β(u, v, t) = du,t − dv,t

of moving to v. The search algorithm we consider in this
paper, called focused greedy, is identical to greedy search,
except that it ignores all nodes v for which the relative benefit

β(u, v, t)/du,v is too small. Precisely, we define the next-hop
space Du,t of u for target t as

Du,t =
{

v ∈ V (G) :
β(u, v, t)

du,v
≥ 1

1 + log β(u, v, t)

}

. (2.2)

In focused greedy search for target t, if u 6= t is the current
node then the next hop is to a node v ∈ Nu ∩ Du,t that
minimizes the remaining distance dv,t to t. Note that Nu ∩
Du,t 6= ∅, because the first node after u in the shortest path
in G from u to t is both in Nu and in Du,t. Thus, focused
greedy search is well defined.

2.3 Main result
The main result of this paper is the following:

Theorem 1 (Upper bound). For any base graph on n
nodes augmented according to the rank-based augmentation
scheme, the expected number of steps of focused greedy search

from any source node to any target node is o(2(log n)1/2+ǫ

),
for any fixed ǫ > 0.

The upper bound of Theorem 1 almost matches the lower
bound of [8] repeated below.4

Theorem 2 (Lower bound [8]). There exists an infi-
nite family of graphs such that, for any n-node base graph
in this family, any augmentation scheme, and any search al-
gorithm that reduces the distance to the target in each step,
there exists a source–target pair for which search requires an

expected number of Ω(2
√

log n) steps.

A family of graphs as described in Theorem 2 is the one
consisting of the

√
log n-dimensional grids where there are

additional edges from each node to all its 2
√

log n diagonal
neighbors. The source–target pairs for which search is hard
consist of nodes that lie on the same diagonal.

3. ANALYSIS
We now present the proof of Theorem 1. We start with

a sketch of this proof, in Section 3.1. In Section 3.2, we
establish some properties of the next-hop space Du,t. The
main proof is described in Section 3.3.

3.1 Proof sketch of Theorem 1
We begin with some properties of the next-hop space.

Du,t has a teardrop shape and is included in the ballBt(du,t−
1), the analogue of Du,t for greedy search (see Figure 1).
Also, for any v ∈ Du,t, Dv,t is included in Du,t. Let ̺u(v),
for v ∈ Du,t, be the radius of the largest ball centered at
v and included in Du,t; and let ru(v) be the radius of the
smallest ball centered at t containing Dv,t \Bv(̺u(v)) (see
Figure 3). We use ̺u to measure the progress of the search
process. We have that for any w ∈ Dv,t, ̺u(w)− ̺u(v) is at
least equal to some positive constant. In particular, if w ∈
Dv,t∩Bt(ru(v)) then ̺u(w)−̺u(v) ≥ ̺u(v)/polylog ̺u(v).
This last property is at the core of our analysis, and it de-
pends critically on the definition of the next-hop space.

The proof of the theorem proceeds by decomposing the
search path into subpaths of certain types, and bounding the
number and lengths of these subpaths. The decomposition is

4This is what is actually proved in [8], although the authors
only claim their result for greedy search.

u

t

Du,t

Bt(du,t − 1)

Bt(d∗u)

Figure 1: Illustration of Lemma 1(a). The next-
hop space Du,t is included in the ball Bt(du,t − 1),
and includes the ball Bt(d

∗
u), where d∗u = du,t −

Θ(du,t/ log du,t).

recursive, and it employs three types of subpaths: σ-paths,
δ-paths, and π-paths. Subpaths of the last two types are
also discomposed into smaller subpaths of the three types,
while σ-paths are not decomposed further; so, the search
path is eventually decomposed into a collection of σ-paths.
Each σ-path P is associated with a reference node u such
that if v is P ’s start node then v ∈ Du,t, and with a target-
ball radius r ≥ ru(v). P ends when a node v̂ is reached
such that (1) v̂ ∈ Bt(r), or (2) for some node û with v̂ ∈
Dû,t, the set Dû,t \ Bt(r) is at least κ ≈ n1/

√
logn times

smaller than Du,t \ Bt(r)—û will be the reference node of
the next σ-path. Intuitively, if (1) occurs, search makes
progress because ̺u increases, and if (2) occurs, because the
size of the part of the base graph we focus on decreases.
We show that for the rank-based augmentation scheme, the
expected length of a σ-path is at most κ·polylog n. Also, the
decomposition of the search path essentially yields a total
number of (log n)O(logκ n) σ-path—this result is based on
the last property of the next-hop space mentioned above.
The desired bound on the length of the search path then
follows.

3.2 Properties of next-hop space
Throughout this section, we assume that u 6= t. Also, the

shorthand notations dv and Dv are used for dv,t and Dv,t,
respectively. In the same spirit, in the notation we introduce
we do not make explicit the dependence on t.

Let f : [1,∞) → [1,∞), with

f(x) = x(1 + log x).

We can rewrite the definition in Equation (2.2) as

Du = {v ∈ V (G) : du,v ≤ f(du − dv)}.

Lemma 1 below describes the shape of Du (see also Fig-
ures 1 and 2). As mentioned earlier, Du has the shape of a
teardrop. The distance from t to the “top” and to the “bot-
tom” of this teardrop is du − 1 and d∗u, respectively, where
d∗u is the solution of the following equation in x:

du + x = f(du − x).

u

t

Du,t

Bt(d)

Bu(f(du,t − d))

Figure 2: Illustration of Lemma 1(b). For any d with
d∗u ≤ d ≤ du,t−1, Du,t is included in the union of Bt(d)
and Bu(f(du,t − d)), and includes their intersection.

Solving this equation, yields

d∗u = du −Θ(du/ log du).

Lemma 1.

(a) Bt(d
∗
u) ⊆ Du ⊆ Bt(du − 1).

(b) For all reals d with d∗u ≤ d ≤ du − 1,

Bt(d)∩Bu(f(du−d)) ⊆ Du ⊆ Bt(d)∪Bu(f(du−d)).

(c) For all v ∈ Du, Dv ⊆ Du.

Proof. Part (a) is obtained as follows. If v ∈ Bt(d
∗
u)

then dv ≤ d∗u, so,

f(du − dv) ≥ f(du − d∗u) = du + d∗u ≥ du + dv ≥ du,v,

where the first relation holds because f is non decreasing,
and the second follows from the definition of d∗u. Thus, v ∈
Du. So, Bt(d

∗
u) ⊆ Du. If v ∈ Du then, by the definition of

f , du−dv ≥ 1, so, v ∈ Bt(du−1). Hence, Du ⊆ Bt(du−1).
We now prove (b). If v ∈ Bt(d)∩Bu(f(du−d)) then dv ≤

d and du,v ≤ f(du − d). So, f(du − dv) ≥ f(du − d) ≥ du,v,
and, thus, v ∈ Du. Therefore, Bt(d)∩Bu(f(du − d)) ⊆ Du.
If v ∈ Du \Bt(d) then du,v ≤ f(du − dv), and dv > d. So,
du,v ≤ f(du − d), and, thus, v ∈ Bu(f(du − d)). Therefore,
Du ⊆ Bt(d) ∪Bu(f(du − d)).

Finally, for (c), we have that if w ∈ Dv then

du,w ≤ du,v + dv,w ≤ f(du − dv) + f(dv − dw) ≤ f(du − dw),

where the last relation holds because f(x)+f(y) ≤ f(x+y).
So, w ∈ Du. Thus, Dv ⊆ Du.

We now introduce a quantity that plays a key role in our
analysis. For any v ∈ Du, we define ̺u(v) to be the solution
of the following equation in x:

du,v + x = f(du − dv − x),

Below, we will write ̺v instead of ̺u(v). Intuitively, ̺v is
a conservative estimate of the distance of v from the “bor-
der” of Du (see Figure 3). The next lemma formalizes this
intuition.

v

u

t

Dv,t

Du,t

Bv(ρu(v))

Bt(ru(v))

Figure 3: ρu(v) is a lower bound on the radius of
the largest ball centered at u and included in Du,t

(Lemma 2); ru(v) is such that Dv,t is included in
the union of the balls Bv(ρu(v)) and Bt(ru(v)), and
includes their intersection (Lemma 3).

Lemma 2. For all v ∈ Du, (a) 0 ≤ ̺v ≤ du − dv − 1; and
(b) Bv(̺v) ⊆ Du.

Proof. Part (a) is obtained as follows. The function
g(x) = f(du − dv − x)− x is strictly decreasing. Also g(0) =
f(du−dv) ≥ du,v, and g(du−dv−1) = f(1)−(du−dv−1) =
2−(du−dv) ≤ 1 ≤ du,v. Therefore, the equation g(x) = du,v
has a unique solution x = ̺v, and 0 ≤ ̺v ≤ du − dv − 1.

For (b), we have that if w ∈ Bv(̺v) then

du,w ≤ du,v + ̺v = f(du − dv − ̺v) ≤ f(du − dw),

so, w ∈ Du. Thus, Bv(̺v) ⊆ Du.

We also introduce another related quantity. For any v ∈
Du, we define

ru(v) =

{

dv − f−1(max{1, ̺v}), if ̺v ≤ dv + d∗v;

−1, if ̺v > dv + d∗v,

where f−1 is the inverse function of f . We will write rv
to denote ru(v). Informally, rv is the radius of the smallest
ball centered at t containing all the nodes in Du that are not
in Bv(̺v) (see Figure 3). Precisely, we have the following
lemma.

Lemma 3. For all v ∈ Du,

Bt(rv) ∩Bv(̺v) ⊆ Dv ⊆ Bt(rv) ∪Bv(̺v).

Proof. If ̺v < 1 then rv = dv − 1. So,

Bt(rv) ∩Bv(̺v) = Bt(dv − 1) ∩ {v} = ∅ ⊆ Dv.

Also, Bt(rv) ∪Bt(̺v) ⊇ Bv(dv − 1) ⊇ Dv, by Lemma 1(a).
If ̺v > dv + d∗v then rv = −1 and Bt(rv) = ∅. So,

Bt(rv) ∩Bv(̺v) = ∅ ⊆ Dv. Also, by Lemma 1(b),

Dv ⊆ Bt(d
∗
v) ∪Bv(f(dv − d∗v)) = Bt(d

∗
v) ∪Bv(dv + d∗v)

= Bv(dv + d∗v) ⊆ Bv(̺v) = Bt(rv) ∪Bv(̺v).

Finally, if 1 ≤ ̺v ≤ dv + d∗v then d∗v ≤ rv ≤ dv − 1. So, by
Lemma 1(b),

Dv ⊇ Bt(rv) ∩Bv(f(dv − rv)) = Bt(rv) ∩Bv(̺v),

and Dv ⊆ Bt(rv) ∪Bv(f(dv − rv)) = Bt(rv) ∪Bv(̺v).

The next lemma, Lemma 4, is the main result of this
section. Lemma 4(a) says that if v ∈ Du and w ∈ Dv

then the difference between ̺w and ̺v is lower-bounded by
a positive constant. This implies that when searching for t
from a node inDu, the value of ̺ is increased by at least that
constant in each step. Lemma 4(b) improves this bound to
̺w − ̺v ≥ ̺v/ polylog ̺v, for the case where w ∈ Bt(rv).
Lemma 4(b) lies at the core of our analysis, and it depends
critically on the fact that the threshold for β(u, v, t)/du,v in
Equation (2.2) is 1/polylog β(u, v, t).5

Lemma 4. For all v ∈ Du and w ∈ Dv,

(a) ̺w ≥ ̺v + 0.46;

(b) if w ∈ Bt(rv) then ̺w ≥ ̺v +h(̺v), for some function
h with h(x) = Ω(x/ log2 x), and h(x) ≥ 0.46 for all
x ≥ 0.

Proof. Let ∆ = ̺w − ̺v. For (a) we must show that
∆ ≥ 0.46. If ̺w ≥ du − dv then ∆ ≥ du − dv − ̺v ≥ 1, by
Lemma 2(a). So, below we assume that ̺w < du − dv.

By the definitions of ̺w and ̺v,

∆ = f(du − dw − ̺w)− f(du − dv − ̺v)− du,w + du,v.

Also, du,w ≤ du,v + dv,w ≤ du,v + f(dv − dw), since w ∈ Dv.
So,

∆ ≥ f(du − dw − ̺w)− f(du − dv − ̺v)− f(dv − dw). (3.1)

The difference f(du − x− ̺w)− f(dv − x) decreases when x
increases, because ̺w < du−dv and f is convex. And, since
dw ≤ dv − 1, f(du − dw − ̺w)− f(dv − dw) is at least

f(du − dv + 1− ̺w)− f(1) = f(du − dv − ̺v + 1−∆)− 1.

Thus,

∆ ≥ f(du − dv − ̺v + 1−∆)− f(du − dv − ̺v)− 1.

Suppose that ∆ ≤ 1 (otherwise, ∆ ≥ 0.46 holds). By a
similar argument as above, we have that

f(du − dv − ̺v + 1−∆)− f(du − dv − ̺v) ≥ f(2−∆)− 1,

since, by Lemma 2(a), du − dv − ̺v ≥ 1. Therefore, ∆ ≥
f(2 − ∆) − 2. Let α = 0.4696 . . . be the solution of the
equation α = f(2 − α) − 2. Then, we have ∆ ≥ α, because
by assuming the opposite we have a contradiction:

∆ < α = f(2− α)− 2 < f(2−∆)− 2 = ∆.

We now proceed to prove (b). From (a), we have that
∆ ≥ 0.46. So, we just have to show that ∆ = Ω(̺v/ log

2 ̺v).
Since this result is asymptotic in ̺v, we can assume that ̺v
is larger than some constant. We will assume that ̺v ≥ 8.

Let z = du − dv − ̺v. By the definition of ̺v,

z = f−1(du,v + ̺v) ≥ f−1(̺v) = Ω(̺v/ log ̺v) (3.2)

Hence, if ̺w ≥ du − dv then ∆ ≥ z = Ω(̺v/ log
2 ̺v). So,

below we assume that ̺w < du − dv.
Inequality (3.1) still applies in the context of (b). Again

we observe that f(du − x − ̺w) − f(dv − x) decreases as x
increases. Also, since w ∈ Bt(rv), dw ≤ rv = dv − f−1(̺v)
(since ̺v ≥ 8 > 1). Thus, f(du − dw − ̺w) − f(dv − dw) ≥
5In particular, a threshold equal to 1/(β(u, v, t))c, for any

constant c > 0, would yield ̺w − ̺v ≥ ̺
1−Θ(1)
v ; and a con-

stant threshold would yield ̺w − ̺v = Ω(1).

f(du − dv + f−1(̺v)− ̺w)− ̺v. Applying this to (3.1), we
obtain

∆ ≥ f(z + f−1(̺v)−∆)− f(z)− ̺v. (3.3)

Next we bound f(z+f−1(̺v)−∆). We will use the following
simple fact.

Fact 1.

(a) For all x, y ≥ 1, f(x+ y) ≥ f(x) + f(y) + min{x, y}.
(b) For all x, y with x ≥ 2y and y ≥ 1, f(x− y) ≥ f(x)−

f(y)− y
(

log x
y
+ 2.2

)

.

Proof. For (a), suppose, w.l.o.g., that x ≥ y. Then,

f(x+ y) = (x+ y)(1 + log(x+ y))

≥ x(1 + log x) + y(1 + log(2y)) = f(x) + f(y) + y.

For (b), we have

f(x)− f(y)− f(x− y) = x log
x

x− y
+ y log

x− y

y
.

Also, log x−y
y

≤ log x
y
, and

log
x

x− y
= log

1

1− y/x
≤ log

1

e−y/x−(y/x)2

= (y/x+ (y/x)2) log e ≤ 3y

2x
log e ≤ 2.2

y

x
,

where for the second and the second-to-last relations we used
the fact that x ≥ 2y. Combining the above yields the desired
inequality. {of Fact 1}

To apply the above result, we will need the condition

∆ ≤ min{f−1(̺v)− 1, f−1(̺v)/2}. (3.4)

Note, however, that if the above inequality does not hold
then ∆ = Ω(f−1(̺v)) ⊆ Ω(̺v/ log

2 ̺v). Also, we will have
to make sure that ∆ ≥ 1. This inequality, however, follows
from our assumption that ̺v ≥ 8, as we explain now. If
∆ < 1 then (3.3) yields

1 ≥ f(z + f−1(̺v)− 1)− f(z)− ̺v.

Also, by (3.2), z ≥ f−1(̺v). Thus,

1 ≥ f(2f−1(̺v)− 1)− 2f(f−1(̺v)).

Solving the above inequality numerically, yields f−1(̺v) <
3, which gives ̺v < 8, contradicting the assumption that
̺v ≥ 8. Thus, ∆ ≥ 1.

By Fact 1(a), we have

f(z+ f−1(̺v)−∆) ≥ f(z)+ f(f−1(̺v)−∆)+ f−1(̺v)−∆,

because, by (3.2), z ≥ f−1(̺v)−∆, and, by (3.4), f−1(̺v)−
∆ ≥ 1. Also, by Fact 1(b),

f(f−1(̺v)−∆) ≥ ̺v − f(∆)−∆
(

log
f−1(̺v)

∆
+ 2.2

)

,

because, by (3.4), f−1(̺v) ≥ 2∆, and ∆ ≥ 1. Combining
the two results above with (3.3), yields

∆
(

log
f−1(̺v)

∆
+ 4.2

)

≥ f−1(̺v)− f(∆),

and solving for ∆ we obtain that ∆ ≥ f−1(̺v)

log f−1(̺v)+5.2
=

Θ
(

̺v
log2 ̺v

)

.

3.3 Proof of Theorem 1
The proof describes a recursive decomposition of the search

path into subpaths of certain types, and it establishes upper
bounds on the number of those paths and on their lengths.
In Section 3.3.1, we define the types of subpaths employed in
the decomposition. The actual decomposition is described
in Section 3.3.2. In Section 3.3.3, we bound the expected
length of the base subpath type. In Section 3.3.4, we com-
bine all the pieces to derive the theorem. We finish with
some remarks, in Section 3.3.5.

3.3.1 Subpath types
We define three types of subpaths of a search path: σ-

paths, δ-paths, and π-paths. A path P of any of the three
types is identified by:

− a starting node v;

− a reference node u such that Du contains all the nodes
of P ; Du is called the reference set of P ;6 and

− an integer r ≥ 0; the ball Bt(r) is the target ball of P .

The triple (v, u, r) satisfies some pre-condition that depends
on the type of P . There is also a post-condition, depending
on the type of P , that describes the last node of P . P is the
shortest subpath of the search path from v to t such that
the first node of P is v, and its last node satisfies the post-
condition. Below, we described the pre- and post-condition
for each path type.

The σ-path with parameters v, u, r is denoted σ(v, u, r),
and the pre-condition that v, u, r must satisfy is

Preσ(v, u, r) :
(

v ∈ Du

)

∧
(

ru(v) ≤ r
)

.

This condition implies that every node in Dv is in Bv(̺u(v))
or in the target ball Bt(r) (see Lemma 3). The following
post-condition determines the last node v̂ of σ(v, u, r). For
any node w, and any real d, define N(w, d) = |Dw \Bt(d)|.
Postσ(v, u, r, v̂) : ∃ û :

(

v̂ ∈ Dû

)

∧
(

N(û, r) ≤ N(u, r)/κ
)

,

where κ = 2
√

log n log log n. Informally, Postσ(v, u, r, v̂) says
that there is a smaller reference set Dû containing v̂, such
that the size of its fraction that is outside the target ball is
at least κ times smaller that the size of the corresponding
fraction of the original reference set Du. Note that it is
not required that û belong to the search path from v to
t. We will denote by ∂σ(v, u, r) the node û described in
Postσ(v, u, r, v̂).

7

The δ-path with parameters v, u, r is denoted δ(v, u, r),
and its pre-condition is

Preδ(v, u, r) :
(

v ∈ Du

)

∧
(

ru(v) > r
)

.

The post-condition specifying the last node v̂ of δ(v, u, r) is

Postδ(v, u, r, v̂) :
(

̺u(v̂) ≥ ̺u(v)+ h(̺u(v)
)

∨
(

ru(v̂) ≤ r
)

,

where h is the function defined in the statement of Lemma 4.
Informally, Postδ(v, u, r, v̂) says that either the distance ̺u
from the border of the reference set is increased sufficiently,
or Preσ(v̂, u, r) is satisfied.

6As before, Dv and dv are shorthand notations for Dv,t and
dv,t, respectively.
7If there are more such û, one of them is selected determin-
istically.

The π-path with parameters v, u, r is denoted π(v, u, r).
Its pre-condition Preπ(v, u, r) is the same as Preσ(v, u, r),
and the post-condition specifying its last node v̂ is

Postπ(v, u, r, v̂) :

∃ û :
(

v̂ ∈ Dû

)

∧
(

N(û, r) ≤ N(u, r)/κ
)

∧
(

rû(v̂) ≤ r
)

,

that is, the conjunction ofPostσ(v, u, r, v̂) and Preσ(v̂, û, r).
So, the triple (v̂, û, r) satisfies the same conditions as (v, u, r),
but N(û, r) ≤ N(u, r)/κ. We will denote by ∂π(v, u, r) the
node û described in Postπ(v, u, r, v̂).

The case of u = ⊥. We extend the definitions of σ-paths
and π-paths to the case where the reference set consists of
all the nodes. Let D⊥ denote the set of all nodes, and let
ρ⊥(v) = ∞ and r⊥(v) = −1, for any v. We define the paths
σ(v,⊥, r) and π(v,⊥, r) using exactly the same definitions
as for σ(v, u, r) and π(v, u, r), respectively, except that all
occurrences of u in these definitions are replaced by ⊥. E.g.,
the pre-condition for both σ(v,⊥, r) and π(v,⊥, r) is (v ∈
D⊥) ∧ (r ≥ r⊥(v)), which holds for any v and r.

3.3.2 Search-path decomposition
We now describe a decomposition of the search path into

subpaths of the types above. The decomposition is defined
recursively in Lemmata 5–7. Lemma 5 decomposes a π-path
into a σ-path and a set of δ-paths; Lemma 6 decomposes a
δ-path into a set of π-paths; and Lemma 7 decomposes a
search path into a set of π-paths as well. In the first two
lemmata, the union of the paths to which the initial path
is decomposed may yield a larger path than the initial one.
This is not a problem, however, since these results are used
to obtain upper bounds on the length of the paths decom-
posed. Unlike δ-paths and π-paths, σ-paths are not decom-
posed into smaller paths; we bound the expected length of
σ-paths in the next section.

Below, we denote the last node of path P by last(P).
Also, we assume that the starting node v is different than
the target t of the search.

Lemma 5. π(v, u, r) is a subpath of
⋃I

i=0 Pi, where P0 =
σ(v, u, r), for i > 0, Pi = δ(vi, û, r) with vi = last(Pi−1)
and û = ∂σ(v, u, r), and I = min{i : rû(vi+1) ≤ r}. Also,
I ≤ c log3 dv, for some constant c.

Proof. First we show by induction that for all i ≤ I , the
pre-condition of Pi holds, thus, Pi is well defined. Clearly,
the pre-condition Preσ(v, u, r) of P0 holds, since it is the
same as Preπ(v, u, r). Let 0 < i ≤ I , and assume that the
pre-condition of Pj holds, for all j < i. By the post-condition
Postσ(v, u, r, v1) of P0, v1 ∈ Dû, so, by Lemma 1(c), vi ∈
Dû as well. Also, rû(vi) > r, since I ≥ i. Therefore, the
pre-condition Preδ(vi, û, r) of Pi holds.

Next, we prove the bound on I . If 0 < i < I , by combining
the post-condition Postδ(vi, û, r, vi+1) of Pi and the fact
that rû(vi+1) > r (since I > i), we obtain that ̺û(vi+1) ≥
̺û(vi) + h(̺û(vi)). From this and the definition of h, it
follows that for appropriate constants i0 and c′ > 0, if i0 ≤
i < I then

̺û(vi+1) ≥ (1 + c′/ log2 ̺û(vi))
i−i0 .

Also, since rû(vi) > r ≥ 0,

̺û(vi) ≤ dvi + d∗vi ≤ 2dvi ≤ 2dv.

From the two inequalities above, it follows easily that I ≤
c log3 dv, for some constant c.8

It remains to show that π(v, u, r) is a subpath of
⋃I

i=0 Pi.
By the post-condition Postσ(v, u, r, v1) of P0, v1 ∈ Dû, so,
vI+1 ∈ Dû. From the same post-condition, we have that
N(û, r) ≤ N(u, r)/κ. Also, rû(vI+1) ≤ r, by the definition
of I . Therefore, Postπ(v, u, r, vI+1) holds, which implies

that π(v, u, r) is a subpath of
⋃I

i=0 Pi.
9

Lemma 6. δ(v, u, r) is a subpath of
⋃I

i=0 π(vi, ui, r̂), where
v0 = v, u0 = u, r̂ = ru(v), for i > 0, vi = last(π(vi−1, ui−1, r̂))
and ui = ∂π(vi−1, ui−1, r̂), and I = min{i : vi+1 ∈ Bt(r̂)}.
Also, I ≤ logκ max{1, N(u, r̂)}.

Proof. It is similar to the proof of Lemma 5. First we
show that for all i ≤ I , the pre-condition of Pi = π(vi, ui, r̂)
holds. The pre-condition Preπ(v, u, r̂) of P0 holds because,
by Preδ(v, u, r), v ∈ Du, and r̂ = ru(v). Also, if 0 < i ≤ I ,
the pre-condition Preπ(vi, ui, r̂) of Pi follows from the post-
condition Postπ(vi−1, ui−1, r̂, vi) of Pi−1.

Next, we derive the bound on I . Combining the post-
conditions Postπ(vi, ui, r̂, vi+1) of Pi, for all i < I , yields
N(uI , r̂) ≤ N(u, r̂)/κI . Also, N(uI , r̂) ≥ 1, since, otherwise,
vI ∈ Bt(r̂), which contradicts the definition of I . Therefore,
N(u, r̂)/κI ≥ 1, and, so, I ≤ logκ max{1, N(u, r̂)}.

Finally, by the definition of I , vI+1 ∈ Bt(ru(v)), and,
by applying Lemma 4(b), we obtain ̺u(vI+1) ≥ ̺u(v) +
h(̺u(v)). Hence, Postδ(v, u, r, vI+1) holds, and, so, δ(v, u, r)

is a subpath of
⋃I

i=0 Pi.

The proof of the next lemma is completely analogous to
that of Lemma 6 and is omitted.

Lemma 7. The search path from node v to t is equal to
⋃I

i=0 π(vi, ui, 0), where v0 = v, u0 = ⊥, for i > 0, vi =
last(π(vi−1, ui−1, 0)) and ui = ∂π(vi−1, ui−1, 0), and I =
min{i : vi+1 = t}. Also, I ≤ logκ n.

3.3.3 Expected length of σ-path
In this section, we establish the following upper bound on

the expected length of a σ-path. We denote the length of a
path P by ‖P‖.

Lemma 8. E[‖σ(v, u, r)‖] = O(κ log n).

Proof. We show that if ‖σ(v, u, r)‖ is larger than i then,
with probability at least 1/κ log n, it is no larger than i+2.
Formally, let L = ‖σ(v, u, r)‖. We show that for all i ≥ 0,Pr[L ≤ i+ 2 |L > i] ≥ 1/κ log n.

From this it is immediate that E[L] = O(κ log n). We now
prove the above inequality.

Let the path σ(v, u, r) be v0v1 · · · vL. Suppose that i < L,
and fix the value of vi, say vi = w. Let A = Bw(x) for
the smallest radius x such that Dw ⊆ Bt(r) ∪ Bw(x). We
describe two properties of the set A that we need for the
proof. The first property is

A ⊆ Du. (3.5)

8Note that this bound depends critically on function h,
which is determined by the shape of the next-hop space;
see also the footnote before the statement of Lemma 4.
9Note that, in general, π(v, u, r) 6= ⋃I

i=0 Pi, since it is pos-
sible that ∂π(v, u, r) 6= û = ∂σ(v, u, r).

We can derive this inclusion as follows. Using the defini-
tions of ru(w) and ru(v), and the inequalities dw ≤ dv,
d∗w ≤ d∗v, and ̺u(w) ≥ ̺u(v), where the last one follows from
Lemma 4(a), it is easy to show that ru(w) ≤ ru(v). So, by
Preσ(v, u, r), ru(w) ≤ r. And since, by Lemma 3, Dw ⊆
Bt(ru(w)) ∪ Bw(̺u(w)), Dw ⊆ Bt(r) ∪ Bw(̺u(w)). Com-
bining this and the definition of A, yields A ⊆ Bw(̺u(w)).
And since, by Lemma 2(b), Bw(̺u(w)) ⊆ Du, (3.5) follows.
The second property of A that we need is

Bt(r) ∩A ⊆ Dw. (3.6)

This can be shown by applying Lemmata 1(a) and (b) (for
Dw and d = r), and using the definition of A.

For the rest of the proof, we distinguish two cases. First
we consider the case of N(w, r) ≤ |A \Bt(r)|/κ. By (3.5),

N(w, r) ≤ |Du \Bt(r)|/κ = N(u, r)/κ,

and since vi+1 ∈ Dw, Postσ(v, u, r, vi+1) holds. Therefore,Pr[L = i+ 1 | (L > i) ∧ (vi = w)] = 1.

We consider now the complementary case of N(w, r) >
|A \Bt(r)|/κ. Let r′ be the smallest radius so that

|Dw ∩Bt(r
′) \Bt(r)| > |A \Bt(r)|/κ.

Clearly, r′ > r. Then,Pr[vi+1 ∈ Bt(r
′) | (L > i) ∧ (vi = w)]

≥ Pr[vi+1 ∈ Bt(r
′) ∩A | (L > i) ∧ (vi = w)]

≥
∑

v′∈Bt(r′)∩A∩Dw

ϕw(v
′)

≥ |Bt(r
′) ∩A ∩Dw|
lnn · |A|

≥ |Bt(r
′) ∩A ∩Dw| − |Bt(r) ∩A ∩Dw|

lnn · (|A| − |Bt(r) ∩A ∩Dw|)
,

where the second-to-last line is obtained by applying the
definition of ϕ and (2.1), and the last by using the fact that
a
b
≥ a−c

b−c
, for 0 ≤ c < a ≤ b. It is

|Bt(r
′) ∩A ∩Dw| − |Bt(r) ∩A ∩Dw|

= |Bt(r
′) ∩A ∩Dw \Bt(r)|

= |Bt(r
′) ∩Dw \Bt(r)|,

where the first relation holds because r′ ≥ r, and the second
because, by the definition of A, A ⊇ Dw \Bt(r). Also,

|A| − |Bt(r) ∩A ∩Dw| = |A| − |Bt(r) ∩A| = |A \Bt(r)|,
where the first relation holds because of (3.6). Combining
the above givesPr[vi+1 ∈ Bt(r

′) | (L > i) ∧ (vi = w)]

≥ |Dw ∩Bt(r
′) \Bt(r)|

lnn · |A \Bt(r)|

≥ 1

κ lnn
, (3.7)

by the definition of r′. If vi+1 ∈ Bt(r
′) then

N(vi+1, r) ≤ |Dw ∩Bt(r
′ − 1) \Bt(r)|

≤ |A \Bt(r)|/κ
≤ N(u, r)/κ,

where the first inequality holds because Dvi+1 ⊆ Dw ∩
Bt(r

′−1), the second because of the minimality of r′, and the
last because of (3.5). So, if vi+1 ∈ Bt(r

′), Postσ(v, u, r, vi+2)
holds, and, thus, L ≤ i+2. Combining this and (3.7) yieldsPr[L ≤ i+ 2 | (L > i) ∧ (vi = w)] ≥ 1/κ lnn.

3.3.4 Expected length of search path
We are now ready to bound the expected length of the

search path. Let Tσ = maxv,u,r E[‖σ(v, u, r)‖], and, for
m ≥ 1, let

Tδ(m) = max{E[‖δ(v, u, r)‖] : N(u, r) ≤ m};
Tπ(m) = max{E[‖π(v, u, r)‖] : N(u, r) ≤ m}.

Define also Tδ(0) = Tπ(0) = 0. By Lemma 5, we have

Tπ(m) ≤ Tσ + c log3 n · Tδ(⌊m/κ⌋).
Also, by Lemma 6 and the fact that r̂ > r,

Tδ(m) ≤ (1 + logκ m) · Tπ(m).

Combining yields

Tπ(m) ≤ Tσ + c log3 n logκ m · Tπ(⌊m/κ⌋),
and unfolding the recurrence we obtain

Tπ(m) ≤ Tσ ·
∑

0≤i≤logκ m

(

c log3 n logκ m
)i

= O
(

Tσ ·
(

c log3 n logκ m
)logκ m)

.

By Lemma 7, the expected length T of the search path from
s to t is

T ≤ (1 + logκ n) · Tπ(n),

and by Lemma 8, Tσ = O(κ log n). Combining gives

T = O
(

logκ n · κ log n ·
(

c log3 n logκ m
)logκ n)

.

Finally, substituting the value of κ = 2
√

log n log log n, we ob-

tain T = O
(

2c
′
√

log n log log n
)

, for some constant c′ > 0.

Therefore, T = o
(

2(log n)1/2+ǫ)

, for any fixed ǫ > 0. This
completes the proof of Theorem 1.

3.3.5 Remarks
The bound we have shown above holds also with high

probability (not only in expectation); i.e., with high prob-

ability, 2O(
√

log n log log n) steps are required, for all source–
target pairs. This follows from the fact that, with high
probability, ‖σ(v, u, r)‖ = O(κ log n), which is immediate
from the proof of Lemma 8. Our result can be extended to
the case of arbitrary weighted base graphs. For this case, the

bound is 2O(
√

logn log log(n+∆)) steps, where ∆ is the aspect
ratio, i.e., the ratio of the largest to the smallest distance
between nodes.

4. OPEN PROBLEMS
We have established an no(1) bound on the expected num-

ber of steps of focused greedy search, a variant of greedy
search, for any source–target pair, in any n-node base graph
that has been augmented via some natural density-based
distribution. This upper bound is essentially tight.

It would be interesting to determine if our bound holds
for greedy search as well. In greedy search, the next-hop

space of node u for target t consists of all nodes v with
β(u, v, t) = du,t − dv,t > 0, while in focused greedy, the
next-hop space consists of those v with β(u, v, t)/du,v ≥
1/ polylog β(u, v, t). Our proof works only for this specific
threshold for β(u, v, t)/du,v. We do not know if this is intrin-

sically required for achieving search paths of length no(1), or
if it is just an artifact of our proof.

The lower bound of Theorem 2 holds for the worst-case
source-target pair, but not necessarily when the source–
target pair is chosen at random. It may thus be the case
that for a random pair, even greedy search takes a polyloga-
rithmic expected number of steps, for any base graph (for a
suitable augmentation). It is an open problem whether this
is true.

Note also that Theorem 2 applies only to search algo-
rithms that move closer to the target in each step. An in-
teresting question is whether there is a combination of a
decentralized search algorithm (which sometimes moves fur-
ther away from the target) and a “natural” augmentation
scheme, such as the rank-based augmentation, that achieves
search paths of polylogarithmic expected length, for any
base graph.

5. ACKNOWLEDGMENTS
We thank the anonymous referees of this paper for their

helpful comments.

6. REFERENCES

[1] I. Abraham and C. Gavoille. Object location using path
separators. In Proc. 25th ACM Symp. on Principles of
Distributed Computing (PODC), pages 188–197, 2006.

[2] M. Dietzfelbinger and P. Woelfel. Tight lower bounds
for greedy routing in uniform small world rings. In Proc.
41st ACM Symp. on Theory of Computing (STOC),
pages 591–600, 2009.

[3] P. S. Dodds, R. Muhamad, and D. J. Watts. An ex-
perimental study of search in global social networks.
Science, 301:827–829, 2003.

[4] P. Duchon, N. Hanusse, E. Lebhar, and N. Schabanel.
Could any graph be turned into a small-world? In Proc.
19th Int. Symp. on Distributed Computing (DISC),
pages 511–513, 2005.

[5] P. Fraigniaud. Greedy routing in tree-decomposed
graphs. In Proc. 13th European Symp. on Algorithms
(ESA), pages 791–802, 2005.

[6] P. Fraigniaud, C. Gavoille, A. Kosowski, E. Lebhar, and
Z. Lotker. Universal augmentation schemes for network
navigability: Overcoming the

√
n-barrier. In Proc. 19th

ACM Symp. on Parallelism in Algorithms and Architec-
tures (SPAA), pages 1–7, 2007.

[7] P. Fraigniaud, C. Gavoille, and C. Paul. Eclecticism
shrinks even small worlds. In Proc. 23rd ACM Symp.
on Principles of Distributed Computing (PODC), pages
169–178, 2004.

[8] P. Fraigniaud, E. Lebhar, and Z. Lotker. A lower bound
for network navigability. SIAM J. Discrete Math., to
appear. (Preliminary version in Proc. 13th ESA, 2006.).

[9] J. Kleinberg. The small-world phenomenon: An algo-
rithm perspective. In Proc. 32nd ACM Symp. on The-
ory of Computing (STOC), pages 163–170, 2000.

[10] J. Kleinberg. Small-world phenomena and the dynam-
ics of information. In Proc. 15th Neural Information
Processing Systems Conf. (NIPS), pages 431–438, 2001.

[11] J. Kleinberg. Complex networks and decentralized
search algorithms. In Proc. Int. Congress of Mathe-
maticians (ICM), 2006.

[12] E. Lebhar and N. Schabanel. Almost optimal decentral-
ized routing in long-range contact networks. In Proc.
31st Int. Colloq. on Automata, Languages and Program-
ming (ICALP), pages 894–905, 2004.

[13] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins. Geographic routing in social net-
works. Proc. National Academy of Sciences of the USA,
102(33):11623–11628, 2005.

[14] G. S. Manku, M. Naor, and U. Wieder. Know thy neigh-
bor’s neighbor: The power of lookahead in randomized
P2P networks. In Proc. 36th ACM Symp. on Theory of

Computing (STOC), pages 54–63, 2004.

[15] C. Martel and V. Nguyen. Analyzing Kleinberg’s (and
other) small-world models. In Proc. 23rd ACM Symp.
on Principles of Distributed Computing (PODC), pages
179–188, 2004.

[16] C. Martel and V. Nguyen. Analyzing and characterizing
small-world graphs. In Proc. 16th ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 311–320, 2005.

[17] S. Milgram. The small world problem. Psychology To-
day, 67(1):60–67, 1967.

[18] A. Slivkins. Distance estimation and object location via
rings of neighbors. In Proc. 24th ACM Symp. on Prin-
ciples of Distributed Computing (PODC), pages 41–50,
2005.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393:440–442, 1998.

