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Graph searches are very well known and used
1. Euler (1735) for solving the famous walk problem in
Kcenisberg

2. Tremaux (1882) and Tarry (1895) using DFS to solve maze
problems

3. Computer scientists from 1950 ....
4. But also : "Fil d'ariane” in the Greek mythology.
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Tarry

LE PROBLEME DES LABYRINTHES;
Par M. G. TARRY.

Tout labyrinthe peut éire parcouru en une scule
course, en passant deux fois en sens contraire par cha-
cune des allées, sans qu’il soit nécessaire d’en connaitre
le plan.

Pour résoudre ce probléme, il sufliv ’observer cette
régle unique :

Ne reprendre Uallée initiale qui a conduit & un car-
refour pour la premicre fois que lorsqu'on ne peut pas
fal‘}'e autrement.

Nous ferons d’abord quelques remarques.
A un moment quelconque, avant darriver & un car-
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Umberto Eco, "Il nome della rosa”, Roman, 1980

-« Pour-trouver: - sortie. ¢’ un-labyrinthe; récira en effed]
Guﬂfanme,dnyaquunmoym Achaquenceudnouveliﬁl,
autrernent.dit jamais visité avant, le parcours d'arrivée

marqué de trois signes. Si, & canse . de signes. pfécadcm.ssg%
T'un des: chemins ‘du nceud, 'on: voit que ce-neud a déjd &)

phmmseﬁ]mgncsrkpﬂmmdmée&,
tous’ les: passages ont €& d&a marguss,” alors il faudra
reprendre 12 méme voie, en Tevenant eir arridre: Mais st ui
ou deux-passages du:noeud sont encore sans’ signes; on en
choisira en: quelconique, pour ¥ apposer-devx signés. Quand
unsachemmpazmpessageqmponeanseulsngne,onm
appposera deux autres, de facon que ce passage ed poite trois
dorénavant. Foutes les parties du' labyrmihc devraieat avoir
élépammmamsz cnamvzntiunlzeud,onmepmndgﬁmals
le passage. avec noxs s:gm sauf si d’a:mes passagcs sonz

- Comment, .e savez«vous" ous em axpert abv-
tinthes?: -

un foxte entique que jai hz

— Ecselon, oeueragle,on sortT

- Presque jamais, que;eﬁchc:Mmsmtcmcronsquand
mémne. Et puis dans les prochains joors Jzerai des verres:et
{'aurai Je temps de mienx me pencher sur les Tivres: T se peut
que 12 ol Je parcours des:certouches nous:e brcmHe, celzn
des im&sm&sdcnneunerég?e SR
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Three main aspects for a graph search :

1. its principle or its algorithm
(i.e. the description of the tie-break rules for the choice of the
next vertex (edge) to be explored )

2. The study of the underlying tree structure

3. The complexity analysis and its implementation or its program
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We will focus here on a fourth one :

» Here we consider a graph search as an operator producing of a
total ordering on the set of vertices (the order in which the
vertices are visited by the search)

» | will try to convince you that this viewpoint can be helpful
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» Building bottom up graph algorithms form well-known

» Develop basic theoretic tools for the structural analysis of
graphs

» No need to store sophisticated data structures, just a labeling
of the vertices, can be used for huge graphs

» Fundamental Question :
Which kind of knowledge can we learn about a graph via
graph searching ( i.e. with one or a series of successive graph
searches) ?
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Problem

For an undirected graph G = (V, E),
explore the vertices of G "traversing or following” the edges.

Result
> a tree structure rooted at the first visited vertex

> an ordering o of the vertices

Questions
» Under which conditions an ordering o of the vertices
corresponds to a search?

» What are the properties of these orderings ?
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Important reference for this today lecture :

These easy questions have been only recently systematically
considered :

D.G. Corneil et R. M. Krueger, A unified view of graph searching,
SIAM J. Discrete Math, 22, Num 4 (2008) 1259-1276
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L Generic Search

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected
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L Generic Search

Generic search

S« {s}
fori<1ando
Pick an unumbered vertex v of S
o(i) < v
foreach unumbered vertex w € N(v) do
if w¢ S then
Add w to S

end
end
end
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L Generic Search

Generic question ?
Let a, b et ¢ be 3 vertices such that ab ¢ E et ac € E.

Under which condition could we visit first a then b and last ¢ ?
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Property (Gen)

For an ordering o on V, if a< b < c and ac € E and ab ¢ E, then
it must exist a vertex d such that d < bet db € E

Theorem

For a graph G = (V/, E), an ordering o sur V is a generic search of
G iff o satisfies property (Gen).
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L Generic Search

Most of the searches that we will study are refinement of this

generic search
i.e. we just add new rules to follow for the choice of the next

vertex to be visited
Graph searches mainly differ by the management of the tie-break

set
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it must exist a vertex d such that d < aet db € E
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Property (B)

For an ordering o on V, if a< b < c and ac € E and ab ¢ E, then
it must exist a vertex d such that d < aet db € E

Theorem
For a graph G = (V, E), an ordering o sur V is a BFS of G iff o
satisfies property (B).
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For an ordering 0 on V, if a< b < cand ac € E and ab ¢ E, then
it must exist a vertex d such that a < d < band db € E.
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Proprerty (D)

For an ordering 0 on V, if a< b < cand ac € E and ab ¢ E, then
it must exist a vertex d such that a < d < band db € E.

Theorem
For a graph G = (V/, E), an ordering o sur V is a DFS of G iff o
satisfies property (D).
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L Generic Search

Applications of BFS

1. Distance computations (unit length), diameter and centers
2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.
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L Generic Search

Applications of DFS

Some applications
> Planarity testing.
» Computation of 2-connected (resp. strongly connected)
components, 2-SAT solvers

» Computation of a linear extension (topological sorting) for an
acyclic digraph, applications to inheritance mechanisms. . ..




e
On the Power of graph searching

I—Lexicographic Breadth First Search LexBFS

Lexicographic Breadth First Search LexBFS



On the Power of graph searching
LLexicographic Breadth First Search LexBFS

Lexicographic Breadth First Search (LexBFS)

Data: a graph G = (V/, E) and a start vertex s
Result: an ordering o of V
Assign the label () to all vertices
label(s) < {n}
for i<~ naldo
Pick an unumbered vertex v with lexicographically largest label
o(i) « v
foreach unnumbered vertex w adjacent to v do
label(w) < label(w).{i}

end
end
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{65} 5 {5}

{6} 6 7 {7}
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{65} 5 {54}

~
N

{6} 6
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3 5 (54}

-
N

{63} 6
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3 5 {54}
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|—Lexir:c;graphic Breadth First Search LexBFS

It is just a breadth first search with a tie break rule.
We are now considering a characterization of the
order in which a LexBFS explores the vertices.
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Property (LexB)

For an ordering o on V, if a< b < c and ac € E and ab ¢ E, then
it must exist a vertex d such that d < aet db€ E et dc ¢ E.
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Property (LexB)

For an ordering o on V, if a< b < c and ac € E and ab ¢ E, then
it must exist a vertex d such that d < aet db€ E et dc ¢ E.

Theorem

For a graph G = (V, E), an ordering o sur V is a LexBFS of G iff
o satisfies property (LexB).
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Why LexBFS behaves so nicely on well-structured graphs

A nice recursive property :
On every tie-break set S, LexBFS operates on G(S) as a LexBFS.
Analogous properties are false for other classical searches.
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Applications of LexBFS

1. Most famous one : Chordal graph recognition

2. For many classes of graphs using LexBFS ordering
"backward” provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example
simplicial for chordal graph)
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|—Lexir:c;graphic Breadth First Search LexBFS

Of course property LexB was known by authors such as M.
Golumbic to study
chordal graphs but they did not noticed that it was a

characterization
of LexBFS
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it must exist a vertex d such that a < d < b and db € E and
dc ¢ E.




On the Power of graph searching
|—Lexir:c;graphic Depth First Search LexDFS

Property (LD)

For an ordering o on V, if a< b < c and ac € E and ab ¢ E, then
it must exist a vertex d such that a < d < b and db € E and
dc ¢ E.

Theorem

For a graph G = (V/, E), an ordering o sur V is a LexDFS of G iff
o satisfies property (LD).
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Lexicographic Depth First Search (LexDFS)

Data: a graph G = (V/, E) and a start vertex s
Result: an ordering o of V
Assign the label () to all vertices
label(s) < {0}
for i< 1ando
Pick an unumbered vertex v with lexicographically largest label
o(i) « v
foreach unnumbered vertex w adjacent to v do
label(w) < {i}.label(w)

end
end
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a
start with a and first visit b
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|—Lexir:c;graphic Depth First Search LexDFS

(=5
-3

start with a and first visit b

we must choose c/next

AAULC
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|—Lexir:c;graphic Depth First Search LexDFS

-3
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|—Lexit:ographic Depth First Search LexDFS

1G]

-3
-2

\[-m

(o3
o
@
=

=

a
start with a and first visit b
we must choose c/next

thenielisinext and we finishind

AIvAY ~_..A_..»\J..._~._‘..A.
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LexDFS

Complexity
s it possible to compute a LexDFS in O(n+ m)?

Spinrad 2008

Best implementation so far needs O(n + mloglogn) using Van der
Boas trees.

First application : D. Corneil, B. Dalton, M. H. 2010

Hamiltonicity on co-comparability graphs via LexDFS.
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Applications

» BFS to compute distances, diameter, centers
Heuristics for diameter

» DFS planarity, strongly connected components, 2-SAT, ...

» LexBFS, recognition of chordal graphs, interval graphs ...

Heuristics for one consecutiveness property

» LexDFS, long paths, minimum path cover
For co-comparability graphs LexDFS computes layered
ordering of the complement partial order.
Heuristics for graph clustering
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MNS

Data: a graph G = (V/, E) and a start vertex s
Result: an ordering o of V
S+ {s}
for i< 1ando
Pick an unumbered vertex v € S with a label maximal under
inclusion
o(i) < v
foreach unumbered vertex w € N(v) do
label(w) < {i} U label(w)

end
end




On the Power of graph searching
|—Lexir:c;graphic Depth First Search LexDFS

Property (MNS)

For an ordering o on V, if a< b < c and ac € E and ab ¢ E, then
it must exist a vertex d such that d < b, db € E et dc ¢ E.
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Property (MNS)

For an ordering o on V, if a< b < c and ac € E and ab ¢ E, then
it must exist a vertex d such that d < b, db € E et dc ¢ E.

Theorem

For a graph G = (V, E), an ordering o sur V is a MNS of G iff o
satisfies property MNS.




On the Power of graph searching
|—Lexicographic Depth First Search LexDFS

Back to the generic search




On the Power of graph searching
|—Lexir:c;graphic Depth First Search LexDFS

Back to the generic search

This search is a kind of Lex Generic Search (using analogy between
BFS (resp. DFS) and LexBFS (resp. LexDFS). This is why MNS is
sometimes named LexGen.
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Conclusions

Using the 4-points configurations we have the following inclusion
ordering between searches

Inclusions
Gen
TN
T N
a ) N
BFS MNS DFS
T TN )
[ DZAN NN
T ) NT

LexBFS MCS LexDFS
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Search classification

Search Tie-break management
Generic search none (random)
BFS queue
DFS stack
LexBFS Lexicographic maximal
LexDFS Lexicographic maximal
MNS Maximal under inclusion
MCS Maximal for the cardinality
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Many classes of graphs or partial orders can be characterized by
the existence of a particular ordering of the vertices with some
forbidden configuration on three points.
Examples with forbidden configuration on three points :
1. Interval graphs : ordering of the left ends of the intervals.
2. Chordal : simplicial elimination ordering.
3. Co-comparability : transitivity violation of the complement
graph
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Importance of 4 points conditions for graph recognition

Many classes of graphs or partial orders can be characterized by
the existence of a particular ordering of the vertices with some
forbidden configuration on three points.

Examples with forbidden configuration on three points :

1. Interval graphs : ordering of the left ends of the intervals.

2. Chordal : simplicial elimination ordering.

3. Co-comparability : transitivity violation of the complement
graph

4. Permutation : transitivity violation of the graph and its
complement.
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Forbidden 3 points suborderings

‘/—._.\ tubenval a&,u;‘,?m
Q Rorded  ouaplis

Q Cocawtawg.kl,_-eb

Y
s re_'uvu.drq Foin
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leportance of 4 points conditions for graph recognition

Consequences

LexBFS is involved in many recognition algorithms for these classes
of graphs.
» Apply a LexBFS on G giving an ordering o

» If G is a comparability graph the last vertex of o, can be
taken as a source in a transitive orientation of G.

> The starting point for comparability and permutation graph
recognition algorithms.
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LLego with basic graph searches

A kind of lego with simple searches

LexBFS

Data: a graph G = (V/, E) and a start vertex s
Result: an ordering o of V
Assign the label () to all vertices
label(s) < {n}
fori< naldo
Pick an unumbered vertex v with lexicographically largest label
o(i) < v
foreach unnumbered vertex w adjacent to v do
label(w) < label(w).{i}

end
end
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LexBFS

for i< naldo

Pick a lexicographic max
end
label(w) < label(w).{i}
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LexDFS

for i< 1ando

Pick a lexicographic max
end
label(w) < {i}.label(w)




e
On the Power of graph searching

|—Lego with basic graph searches

Using a remark by Berry, Krueger and Simonet 2011
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for i< 1ando

Pick a lexicographic min
end
label(w) <« label(w).{i}

LexBFS on G
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co-LexDFS

for i< 1ando

Pick a lexicographic min
end
label(w) < {i}.label(w)

LexDFS on G
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LexUP New!

for i< 1ando

Pick a lexicographic max
end
label(w) <« label(w).{i}
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LexDown New !

fori< naldo

Pick a lexicographic max
end
label(w) < {i}.label(w)
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|—Lego with basic graph searches

These two new searches LexUP and LexDown were characterized
by Jérémie Dusart (Master MPRI 2010-2011) using forbidden
configurations.
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LPlrinciple of a Composition of Searches

Since we focus on the ordering of the vertices as the result of a
graph search, now we can compose graph searches in a natural way.
Therefore we can denote by M(G, xg) the order of the vertices
obtained by applying M on G starting from the vertex xg.

Definition of the + Rule

Let M be a graph search and o an ordering of the vertices of G,
M (G, o) be the ordering of the vertices obtained by applying M
on G starting from the vertex o(1) and tie-breaking using ¢ in
decreasing order.
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I—Principle of a Composition of Searches

Why this Rule?

The + Rule forces to keep the ordering of the previous sweep in
case of tie-break
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|—Principle of a Composition of Searches

» Graph searches operate on total orderings :
Step 0 : 0 = M(G, xp)
Step 1 : M(G,o0)
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» Graph searches operate on total orderings :
Step 0 : 0 = M(G, xp)
Step 1 : M(G,o0)
Step 2 : M?(G,0) = M(G, M(G,0))

Step i : MI(G,0) = M(G, MI~1(G, o))

» For which search M and graph G does there exist fixed
points ?

» Unfortunately a formal study of this composition remains to
be done!

> Also called multisweep algorithms.
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1. Such an idea was already used for planarity testing in some
algorithm (de Fraysseix and Rosentiehl 1980) with 2
consecutive DFS.

2. Algorithms for strongly connected components by Kosaraju
1978, Sharir 1981
In our framework,
1) DFS(G)
2) DFS(G—, post9)

3. To compute efficiently the diameter of a graph using
successive BFS
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Linear time recognition algorithms for interval graphs

» Booth and Lueker 1976, using PQ-trees.

» Korte and Mohring 1981 using LexBFS and Modified
PQ-trees.

» Hsu and Ma 1995, using modular decomposition and a
variation on Maximal Cardinality Search.

» Corneil, Olariu and Stewart SODA 1998, using a series of 5+1
special consecutive LexBFS, published in 2010.

» M.H, McConnell, Paul and Viennot 2000, using LexBFS and
partition refinement on maximal cliques (a kind of LexBFS on
cliques and minimal separators).

» New ! Peng Li, Yaokun Wu, using 3 +1 special LexBFS, 2011
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Repeated LexBFS

Require: G = (V,E)
Ensure: an ordering o
o < LexBFS(G)
for i =2to |V| do
o <+ LexBFS™(G,0)
end for

Algorithm 1: LexBFS™ multi-sweep
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|—Principle of a Composition of Searches

Property

If G =(V,E) is an interval graph, that the previous algorithm
finds a fixed point in less than |V/| iterations
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|—Principle of a Composition of Searches

Generalization to comparability graphs

Question

If G =(V,E) is co-comparability graph, what can be said ?

Is the series (LBFS™(G))' periodic (with a period less than |V/| )?
i.e. 3i < j << n such that :

(LBFS™(G))' = (LBFS*(G)).

Is (LBFS*(G))" a cocomp ordering ?
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|—Principle of a Composition of Searches

Cocomp orders

LBFS Orderings

Another way to produce a transitive orientation in linear time
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Three applications :

1. Hamiltonicity on co-comparability graphs, D. Corneil, B.
Dalton, M.H. 2010

2. New linear extensions for partial orders D. Corneil, M.H., E.
Kéhler, 2012

3. Exact diameter computations using a series of BFS, P.
Crescenzi, R. Grossi, M.H., L. Lanzi, A. Marino, 2011.
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Hamiltonicity on co-comparability graphs

» For a co-comparability graph G find a Minimum Path Cover
» Let P be a transitive orientation of G
our problem reduce to computing the bump number of P
(Polynomial algorithm MH, Mohring, Steiner 1988)
» Another equivalent formulation as the 2-machine scheduling

problem
(Another polynomial algorithm Gabow, Tarjan 1985)
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Our Algorithm

1. Start with o any co-comparability ordering of G (a linear
extension of P)

2. Apply LDFS™ (o) to produce an ordering 7.
3. Apply RightMostNeighbour(7) which gives the path cover

4. Exhibit a certificate of minimality with a cut-set.
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Let us take an example

1. 0=2,6,0,3,4,5,1,7,8,9 a co-comparability ordering
2. 7= LexDFS*(0) =9,8,5,7,4,1,3,2,0,6
3. RightMostNeighbour(T) = 6,2,0,1,3,7,4,8,5, |9
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Magic

1. RightMostNeighbour(T) =6,2,0,1,3,7,4,8,5,](9
2. The cutset S = {1,7,2,8} disconnects G into 6 connected
components.



On the Power of graph searching

|—Some applications

Lower bound
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As a byproduct we obtain new methods to produce linear
extensions

Important Lemma

If o is a co-comp ordering of G, then LDFS™ (o) is a co-comp
ordering of G.
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Diameter computations

" While theoretical work on models of computation and methods
for analyzing algorithms has had enormous payoffs, we are not
done. In many situations, simple algorithms do well. We don’t
understand why ! Developing means for predicting the performance
of algorithms and heuristics on real data and on real computers is
a grand challenge in algorithms.” Challenges for Theory of
Computing by :

CONDON, EDELSBRUNNER, EMERSON, FORTNOW, HABER,
KARP, LEIVANT, LIPTON, LYNCH, PARBERRY,
PAPADIMITRIOU, RABIN, ROSENBERG, ROYER, SAVAGE,
SELMAN, SMITH, TARDOS, AND VITTER, Report for an
NSF-sponsored workshop on research in theoretical computer
science.
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Up to now

At least 2 new searches with no applications yet

2 consecutive LBFS enough to recongize cographs

4-5 consecutive LBFS are enough to capture the structure interval
graphs

(similar result for co-comparability graphs) ?
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Graph decompositions and applications to networks

1. Failure to use treewith and d-hyperbolicity for networks.
2. Negative results also for modularity measures.

3. We keep this subject as a theoretical tool to analyze networks
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Work in progress

1. Extend diameter results to efficient computation of centers
(one or all)

2. Understand why the 4-sweep method works so well (analogy
with Quicksort)

3. Uses a series of sweep for preprocessing for hard combinatorial
problems (already used in biological applications of interval
graphs)

4. A theory of graph searches : searchoids? Develop theoretical
tools to analyze multisweep algorithms and prove fixed points
properties.
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Hints for future

1. Develop approximation algorithms even for polynomial
problems but applied on huge data

2. Apply to max flow problems in competition with spectral
graph theory a la PageRank

3. Reconsider consecutive ones property and planarity
4. Community detection in networks (using LexDFS 7)
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Biological networks

1. Clustering and graph compression
2. Propagation and recommendation algorithms

3. Phylogeny on networks (instead of trees)
perhaps too hard for the next 4 years
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Some informal justifications

1. Networking uses some graph theory and algorithms (example
OLSR and many other routing protocols, but also P2P with
their overlay networks)

2. Our group in distributed computing is very closed to graph
algorithms

3. Growing importance of social networks in our everyday life
(ANR project Algopol, with Orange, EHESS and Linkfluence)

4. Clustering and recommendation algorithms to reason with
heterogenous sets of data
(join work with a start-up PaperMind, tremendous potential
applications for graph algorithms)
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LSome Perspectives for Gang

Interdisciplinarity aspects

1. With Biologists (2-years post-doc on a common subject
supported by Paris)

2. With sociologists from Orange (Uses of Networks) ANR
project.
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Thank you for your attention !
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