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A Framework for Automated Exploit Prevention
from Known Vulnerabilities in

Voice over IP Services
Abdelkader Lahmadi and Olivier Festor

Abstract—We propose a prevention system for SIP-based
networks which adopts a rule-based approach to build preven-
tion specifications on SIP protocol activities that stop attacks
exploiting an existing vulnerability before reaching their targets.
Our approach innovates from existing solutions by making
use of the contextual information of a vulnerability targeted
by an attack to apply the prevention specification. Manually
coding these prevention specifications is tedious and error-prone.
Our method automatically infers prevention specifications by
analyzing captured SIP exploit traffic. The detection engine uses
an efficient method based on event graphs to match protocol
activities against available prevention specifications. We describe
the different components of our approach and show through
an extended performance study of the implemented system its
applicability to enterprise level VoIP protection.

Index Terms—Exploit prevention systems, security, session
initiation protocol, voice over IP, vulnerability management.

I. INTRODUCTION

THE Session Initiation Protocol (SIP) [1] is designed
to establish, modify, and terminate a session of any

application service that uses sessions. The security of the SIP
protocol has gained an increasing interest over the years and
remains a focal point both in academic and industrial research.
Part of this interest is due to the large number of discovered
vulnerabilities linked to the SIP ecosystem. The sources of
these vulnerabilities are mainly the weakness of some of its
implementations, errors in configuration and in rare cases
its specification semantics [2], [3]. Both implementation and
configuration dependent vulnerabilities are usually discovered
using various analysis and testing methods among which,
fuzzing [4] where the main purpose is to discover the effect
of either malformed messages or the impact of a specific
sequence of messages on a particular SIP implementation.
Configuration errors can also be identified through an au-
tomated security process checking against known vulnerable
configurations and best practices. Specification based vulner-
abilities can be found through formal analysis of SIP related
specifications and can be tested using attack tools.
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A primary way to counter SIP implementation vulnerabil-
ities exploitation is through patching. Patching time however
is often long [5] and until the effective update happens the
SIP network is kept on leash to attackers. To protect SIP
services from such scourge, a first line of defense systems
have to be deployed. A defense system can start with network
level firewalls, where packets are filtered without a deep
understanding of the SIP protocol semantics. Another way,
is to use detection engines like Snort [6] with a set of known
attack signatures.

Recently, several SIP aware application layer firewalls [7],
[8], [9], [10] have been developed to counter SIP-based
attacks. These solutions to protect SIP networks from known
vulnerabilities lack enough flexibility and extensibility. A
prevention system needs to be fed with vulnerability spec-
ifications together with counter-measures using a domain-
specific language. The prevention system runtime screens
the SIP traffic and identifies vulnerabilities according to the
authored specifications. Most of existing protection systems
use low-level languages such as C, or plugins to statically
load vulnerability specifications. The authoring process must
be repeated for each new discovered vulnerability, despite the
fact that many SIP vulnerabilities share common properties
over SIP messages, dialogs or fields.

We design a framework with the following goals: (i) provide
a language that eases the specification of prevention schemes
of discovered vulnerabilities in SIP based services such as
Voice-over-IP, (ii) automatically execute the prevention spec-
ification by traveling through SIP messages.

In previous work [11], [12], we have presented separately
the two core building blocks of our approach: the SecSIP
engine and the VeTo language. We present here the overall
chain of our automatic prevention framework which includes
the former two main components and an automatic facility
to generate the prevention specifications. VeTo [11] is an
event-driven rule-based language to specify SIP vulnerabilities
and their respective counter-measures. It is stateful since it
includes features to record SIP protocol states over messages,
transactions and dialogs. Each specified prevention scheme
is executed by the SecSIP runtime engine deployed as ”a
bump in the wire” device in a SIP network. SecSIP uses a
graph based approach to process the events and execute the
actions specified in VeTo rules. It propagates the events until
a vulnerability exploit attempt is detected and a prevention
needs to be triggered (e.g. drop a message or reformat an

1932-4537/12/$31.00 c⃝ 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

option field). We restrict prevention specification matching to
the vulnerability context within which an attack appears. For
instance, an attack may appear within a particular SIP message
which targets a specific network element. Development of
context aware prevention specifications is another important
contribution of this paper. Previous approaches have largely
ignored this step when coding prevention schemes.

The remainder of the paper is organized as follows: Sec-
tion II describes the major known vulnerabilities in the SIP
protocol and its implementations. In section III, we present
existing SIP specific defense systems and attack specification
languages with a focus on the STATL [13] and the SHIELD
[14] languages. Section IV details the VeTo language features
and its semantics. We illustrate its use on two examples:
vulnerabilities coming from malformed messages and exploits
using flooding attacks. In section V, we detail our contribu-
tion to the automatic generation of VeTo specifications from
vulnerable SIP messages. The approach relies on a genetic
algorithm applied to regular expressions to characterize mal-
formed messages. Section VI presents the implementation of
the SecSIP engine to handle SIP messages and execute VeTo
specifications against them. Section VII provides a qualitative
analysis of VeTo, Snort and STATL to express different
prevention schemes. We then evaluate the SecSIP runtime
using basic scenarios to assess its call handling capacity with
activated preventions. Finally, we draw some conclusions and
identify future works.

II. BACKGROUND AND MOTIVATIONS

A. Terminology

Some of the terms used in this paper have different mean-
ings in different papers, depending on the author. For clarity
and consistency, we adopt the following definitions from the
National Information Systems Security Glossary [15]:

∙ vulnerability, flaw: weakness in system security design,
implementation, configuration or limitations that could be
exploited.

∙ attack: Attempt to gain unauthorized access to a service,
resource, or information, or the attempt to compromise
integrity, availability, or confidentiality. The success of
the attack is not necessary.

∙ attacker, intruder, adversary: The originator of an
attack.

∙ prevention: a counter-measure or procedure applied on
network activity to stop an attack attempt to exploit a
vulnerability, before it reaches its target.

B. SIP basics

SIP [1] is a protocol designed to negotiate, establish and
terminate a session between two or more peers. It is used
as a signaling protocol to provide many services such as
voice, TV or video on demand. The SIP service infrastruc-
ture relies on several entities, including a User Agent that
generates or terminates SIP requests, registrars, where users
register themselves and announce their availability in the SIP
network and proxies that forward requests in the appropriate
SIP networks. Despite the well-known attacks that the SIP
architecture inherits through the utilisation of the Internet

protocol stack, there are dedicated attacks on the SIP protocol
itself or on its implementations. The attacks exploit bugs in
SIP implementations or weaknesses in its design.

C. SIP exploits and vulnerabilities

SIP messages are text-based and use the UTF-8 charset.
This feature leads to an easy modification by man in the
middle attackers. Cryptographic mechanisms to protect SIP
messages are not widely deployed because intermediate nodes
that may modify SIP messages for their routing are part of
the architectural design of the framework and for tsome of
them do not support crypto-based security either by design or
through mis-configuration. The SIP protocol uses the INVITE
message to setup and modify dialogs over their lifetime.
According to RFC 3261 [1], the message used to modify
dialog properties is called re-INVITE, but it has the same
method value as INVITE. This may result in a theft of service
by exploiting a spoofed message or simply relaying a crafted
re-INVITE message to establish calls.

SIP routing relies on the proxy elements that take down-
stream routing decisions based on the routing headers and
upstream routing decisions based on Vias fields. The SIP
routing mechanism leverages several vulnerabilities [16] since
any element can insert/delete/alter routing headers and proxies
route statelessly without call-route state or global route knowl-
edge. These vulnerabilities may generate different types of
attacks. These attacks are broken down into network topology
privacy breach, toll fraud and DoS based attacks.

As described in [1], SIP mandates the use of HTTP digest-
based authentication as a security mechanism to protect SIP
messages. It provides anti-replay protection and one-way au-
thentication to SIP messages. However, the SIP authentication
mechanism has several weaknesses [17] since SIP servers and
proxies need to access and modify certain fields in crossing
messages. This mechanism only applies to a few SIP messages
(INVITE, BYE, REGISTER), and leaves other important SIP
messages (TRYING, OK, ACK, BUSY) unprotected. It only
also protects a few SIP fields (Request-URI, realm), and leaves
other important fields unprotected (e.g, From, To).

These weaknesses can be exploited to launch different at-
tacks on SIP based networks. A rich set of existing works [17],
[18], [10], [19] have addressed SIP vulnerabilities and exploits
to examine how they can be efficiently used to compromise the
reliability and trustworthiness of SIP-based networks. While
in [17], the focus is made on billing attacks, the SIP protocol
is also exposed to traditional DoS attacks [20] on ethernet
bandwidth and/or OS/firmware to exhaust available resources.
Furthermore, SIP comes with its own set of specific DoS at-
tacks [10] (message flooding, transaction flooding, transaction
anomalies). These two contributions, have mainly illustrated
SIP exploits rather than the specification of the vulnerability
that allows such attacks. In [19], SIP attacks are enumerated
together with the vulnerabilities that cause them. The lack of
authentication is for example, the major cause of signaling
attacks like BYE, CANCEL and Re-INVITE.

D. Complexity of fixing vulnerabilities

In this section, we draw attention to some key aspects of
fixing known SIP vulnerabilities, particularly the complexity
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to be patched and managed adequately.
1) Rising number of vulnerabilities and reluctant adminis-

trators: The major problem facing the fixing of vulnerabilities
is their rising number and the inability of users to efficiently
cope with the number of patches issued for these vulnera-
bilities [21]. As this number rises, the time to patch becomes
high, up to the order of months [5]. In addition, patches can be
difficult to apply and might even have unexpected side effects
as a result of compatibility issues.

2) Diversity and dynamics of vulnerabilities: Discovered
vulnerabilities in the SIP world may involve several dialogs
and different headers over multiple messages. Our analysis
of existing vulnerabilities shows that they may share the
same SIP protocol properties but for different purposes. For
example, many malformed SIP message vulnerabilities have
the same type of message but rely on different malformed
headers like via, call-ID, or content length. A vulnerability has
a lifetime dynamics where it may be discovered or disappear
after a patching operation or a software upgrade. Therefore,
the prevention mechanism requires a configuration change
to reflect the evolving nature and the emergence of new
vulnerabilities.

3) Multiple vulnerabilities per device: A device involved in
a SIP service has its own vulnerabilities due to errors in its im-
plementation. Prevention from exploiting these vulnerabilities
has to take into account that one or many vulnerabilities are
associated to a particular device. The prevention mechanism
has to map vulnerabilities to devices, otherwise it may waste
the resources of the prevention runtime. We therefore need
to apply prevention specifications according to the existing
devices in the SIP network and their respective running state.

III. INTRUSION PREVENTION SYSTEMS AND LANGUAGES

We present in this section different solutions that have
been proposed in the litterature to counter SIP-based attacks
and offer prevention languages and supporting runtimes that
influenced the design of the SecSIP framework. Traditional
solutions like Snort or Bro [6], [22] are general and do not
target the SIP protocol. Therefore they are unable to dig
into SIP message payloads and interactions leading to limited
expressivity. Recently these approaches have started to support
some SIP exploits such as INVITE flooding attacks but in a
very limited way. Several SIP DoS countermeasure solutions
have been proposed to defend a SIP infrastructure [23]. Most
of them, however focus only on some specific attacks and their
implementations are either partial or unreported.

A. SIP-based defense systems

The existing defense approaches we do consider fall into
two categories: proactive and reactive. A reactive defense
approach generates an inoculation in response to an attack.
This response will protect SIP devices. An example of such
inoculation is the application of patches to eliminate a bug
exploited by the attacker. There are many additional examples
of reactive defense approaches including cross-protocol cor-
relation, statistical analysis, attack signatures, reactive address
blacklisting, etc. These solutions attempt to recognise post-
attacks and take a counter-measure later. Proactive defense

prevents malicious transactions and malformed packets from
reaching the intended victim. A common proactive approach to
identify malicious behaviour is to record interacting SIP states,
attributes and messages, and prevent them from reaching the
victim. In this case, the approach is stateful. A proactive
approach may operate anywhere in the network perimeter. If
located at the victim side such an approach becomes useless,
since a denial of service attack damage still occurs while the
defense system tries to prevent it. However, if a proactive
solution is located at the network ingress point rather than on
end-host, the victim is kept unaffected. A proactive approach is
suitable to cover compromise attacks like toll fraud, unwanted
calls and messages [19].

SCIDIVE is one proposal for stateful intrusion detection [8]
propose a solution. The system relies on a stateful detection
engine that determines the current state from the observation
of multiple packets involved in the same session. The system
also uses cross-protocol detection to verify the consistency
between two protocols involved in the same VoIP session,
mainly SIP and RTP. The mechanism does not provide any
mitigation feature; only detection is described. The authors
only present the overall approach and a small number of
detection rules. While the proposed solution is considered
proactive, it lies on UA (victim side) attack detection. Their
IDS is host-based, needing to be deployed at a place where
it can monitor both SIP and RTP messages. In [7],VoIP
defender is presented. VoIP defender is a SIP-based NIDS
designed to monitor, detect, analyse and counter attack. It is
a building block to be placed as a proactive detection system
at the ingress point of the network. Unfortunately, the nature
of the employed detection and security scheme (stateful or
stateless) is not clearly defined in the available documentation.
In addition, no details are provided about the language used
to build defense rules and how it can be used for SIP.

In [9], [10], authors propose a SIP attack detection approach
based on full state machines specification. They target only
attacks on UA (victim side) where an attack signature is
specified to describe the state flow in the state machines. The
authors have not considered attack mitigation. The solution
proposed in [10] is theoretical and needs to be placed into an
existing IDS to assess its applicability and performance. In
[9], the authors claim an implementation of their IDS without
further details and provide only simulation results.

Our designed SecSIP framework shares the stateful feature
with SCIDIVE [8] but our approach is more systematic as we
formulate how to specify detection and mitigation rules for
different attacks. Our solution is designed to be placed as a
proactive prevention block at the ingress point of a network
which is similar to the VoIP defender solution [7]. The SecSIP
framework provides a novel feature that can be coupled to
vulnerability and exploit discovery tools. As we described
in section V, we developed an off-line tool to generate
preventions policies from exploit messages discovered, for
example, by the KIF [4] fuzzing tool. These generated policies
can then be deployed on the SecSIP prevention engine.

B. Preventions enabling languages

To the best of our knowledge, no domain specific language
has been published so far to model SIP attacks or vul-
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nerabilities and their respective counter-measures. However,
multiple research activities [23] were focused on the develop-
ment of runtime systems and mechanisms where vulnerability
occurrences and attack signatures are encoded internally. In
the general area of network intrusion detection mechanisms,
several attacks and detection languages have been proposed
[24].

We identify two classes of such languages: stateful and
stateless. Stateless languages describe attack events indepen-
dently, while stateful languages consider the relationships
between events and are able to model event histories that
represent attacks. Existing languages do not provide features
to address the SIP protocol semantics necessary to describe
vulnerabilities. Instead, they use generic signature models,
e.g., applying regular expression or state machines to a known
protocol data. The generated signatures are usually generic and
do not consider the context properties of a vulnerability.

1) Stateful languages: Languages based on finite state
machines such as STATL [13] and SHIELD [14] have been de-
signed to express network protocol attacks and vulnerabilities.
SHIELD is a vulnerability driven language used to express
application layer binary protocol vulnerabilities at end-hosts.
In their approach, the authors only specify the part of the
protocol state machine that exhibits a vulnerable behaviour.
VeTo shares with SHIELD this feature since our aim is to
only specify the part of the SIP protocol and its instances
involved in a vulnerability. Due to the limited publicly data
available on the SHIELD specification, we could not assess
its practical applicability to SIP.

GAPAL [25] is a generic application level protocol analyser
that relies on a stateful language to describe protocol syntax
and semantics for their parsing and analysis. GAPAL and
SHIELD have the same syntax, the former being an extension
to the later to support the analysis of text-based protocols.

In [13], the authors present a state/transition based language
called STATL, dedicated to attack recognition. The language
allows the description of domain-independent attacks. It relies
on the state transition analysis technique [26] which is an
abstraction of attack actions to a higher representation. In
STATL, an attack is modeled as a sequence of steps that
bring the system from an initial safe state to a compromised
state. The attack is represented as a composition of states
and transitions. They also use variables to record the part of
the system state needed to define an attack signature. Each
transition has an associated event that may cause the transition
to a new state. The language has been used on different
domains such as network attacks and Unix system attacks.
Unlike STATL, the VeTo language is not a pure state/transition
based language, but it uses an event-driven approach. An
event-driven approach is more suitable to overcome the STATL
limitations regarding time, intervals and relationships among
events. But representing events as transitions through a single
chain of states precludes the recognition of a vulnerable
behaviour without any time order. In addition, a pure state/-
transition approach is ineffective [27] and may introduce a
state explosion problem when describing a large number of
vulnerabilities.

2) Stateless languages: Snort [6], the defacto-standard
open source intrusion detection tool relies on a signature-

based language to detect intrusion. Its language is stateless
since it does not provide means to record protocol states.
The stateful feature of Snort is provided by the preprocessors,
where the inspection is hard coded. For example, the stream4
preprocessor is used by Snort to maintain an internal state
table for each TCP session. The VeTo language provides an
expressive way to construct stateful variables which keep track
of SIP protocol histories. In addition, the language provided
by Snort is signature-based and relies on exploit description
rather than the vulnerability description approach used by the
VeTo language.

Extending these languages to support the SIP semantics
does not solve these issues since their underlying matching
models are hardcoded. Therefore, we designed a new language
dubbed VeTo dedicated to the prevention from existing vul-
nerabilities exploitation in the SIP protocol.

IV. VETO LANGUAGE OVERVIEW

VeTo relies on three features to counter a particular known
vulnerability exploit. The language combines a context, a
definition and the event properties of a vulnerability to provide
the ability to prevent against its exploitation. The context block
exhibits the vulnerability surrounding environment properties.
The definition block provides the vulnerability related assump-
tions on its behaviour such as the involved SIP messages
and their respective fields. The prevention block describes
the vulnerable behaviour within its context and includes a
response action. The definition and the context blocks can be
shared by different vulnerabilities. However, each vulnerability
has its own prevention block.

A. Context block

The context block describes the information associated to
different specified protection blocks. In VeTo, a context is
defined as a set of labeled attributes with predetermined
values. Instead of a value, an attribute can have a set of values.
The context attributes are mainly the URI of the targeted SIP
entity, the date at which a patch is expected to be applied to
remove the vulnerability and the firmware version where it is
reported. The context is used to trigger the proper protection
block according to the current information available to the
language runtime. A context is associated to one or several
protection blocks, but a vulnerability has a single context
block.

Rule 1 shows a specification of a context block.

Rule 1 A VeTo context specification.
CONTEXT GlobalCtx BEGIN
TARGET => udp:phone1.example.com:5060;
TARGET => tcp:phone2.example.com:*;
TARGET => *:softphone1.example.com:*;
CONTEXT END
CONTEXT myCtx BEGIN
INCLUDE => GlobalContext;
LIFETIME => 2009-05-07;
CONTEXT END

The TARGET attribute denotes a SIP element that is con-
cerned by a vulnerability protection scheme. A target value is
composed of the transport protocol underlying the SIP traffic
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behind the vulnerability, an IP address, range or hostname
of the targeted SIP element and the port of that SIP traffic.
The LIFETIME attribute is specified as recommended in RFC
3339. It denotes the date when the vulnerability is announced
to be fixed or removed. When this date is unknown, the
attribute is omitted from the context block. The INCLUDE
property allows to include the content of another context. For
example, consider the context block called GlobalCtx that
enumerates a list of sip devices using the target attribute. Then,
there is a context called myCtx that includes GlobalCtx
and contains a lifetime attribute to specify the patch time of
a particular vulnerability.

B. Definition block

The definition block relies on regular expression based
pattern matching rules. Each rule is composed of an optional
header part including a pattern matching statement and a
mandatory action part. The header of each rule is the com-
position of terms followed by the @MATCH operator and a
regular expression. The body of the rule is an action which
defines typed variables to be used by a protection block. The
term component refers to an element from the parsed tree of a
SIP message. When the term value matches the given pattern,
the variable is created by the runtime.

Rule 2 shows a definition block named contactDefs. The
block contains two rules. The first rule defines a SET type
variable used to store the values of the contact field of a
SIP message. The contact field is referenced using the prede-
fined constant sip:headers.contact. The second rule contains
a matching pattern against the method field of a SIP request.
If the field matches the pattern INVITE, the action creates an
event named ev Invite.

Rule 2 A VeTo definition block.
DEFINITION contactDefs BEGIN
LET: SET[sip:headers.contact] contacts;
WHEN sip:headers.method @MATCH "ˆINVITE$" ->

LET: EVENT ev_Invite;
DEFINITION END

C. Prevention block

The prevention block relies on event-based rules which de-
scribe the logical part of the vulnerable behaviour. It specifies
the event patterns and their respective actions when they are
satisfied. The event pattern part uses the set of variables de-
fined in the definition blocks. Each prevention block specifies
a protection scheme and has a unique identifier, an optional
context specified @ symbol and a USES statement to use a
set of definitions. Rule 3 shows a protection block named
myProtection with a single rule. The block has as context
myCtx which was described earlier. The rule header part
specifies an event pattern based on the event ev_Invite.
The occurrence of the event triggers the STORE action against
the previously defined set type variable contacts. The
STORE action keeps in memory the collection contacts which
contains the values of the contact field over observed SIP
messages.

Rule 3 A VeTo prevention block specification.
VETO myProtection@{myCtx} USES ContactDefs BEGIN
(ev_Invite) => STORE:contacts;
VETO END

1) Events Sequence: The events sequence takes as input a
list of n event labels. It specifies a particular order in which
the events must occur to be considered.

The following example represents a simple pattern of two
events labels ev ack and ev invite. The rule checks if the
ev ack event precedes the ev invite event. If the pattern is
matched, then the SIP message is dropped.

(ev_ack,ev_invite) -> DROP;

We note that we can use short cut notations to describe event
sequences. We can use, for example the repetition operator ”*”
as described below.

(ev_invite[*2],ev_200_OK,ev_ack)

The above pattern checks if two successive ev invite events
are followed by ev 200 OK and ev ack events.

2) Embedded events: An embedded event is an event that
occurs at the same time as another event. It allows to match
an arbitrary number of events that appear at the same instant
of the arrival of a SIP message.

3) Negation patterns: A negation pattern specifies an event
that does not appear within a sequence of events. When the
sequence is empty, the negation pattern specifies any event
that is different from the specified event. The negation pattern
is denoted by the symbol ∼. Rule 4 depicts the usage of
a negation pattern. The definition block creates the variable
contacts of a set type as depicted in line 2. It also creates
an event named Ev_BYE as depicted in line 3. The rule in the
Veto block checks the non occurrence of the event Ev_BYE
to feed the contacts list with the values of the field contact
of a SIP message.

Rule 4 An illustration example of the usage of a negation
event pattern.

1 DEFINITION NegationDefs BEGIN
2 LET: SET[sip:headers.contact] contacts;
3 WHEN sip:request.method @MATCH "ˆBYE$" ->
4 LET: EVENT Ev_BYE;
5 DEFINITION END
6

7 VETO Negation USES NegationDefs BEGIN
8 (˜Ev_BYE ) -> STORE: contacts;
9 VETO END

4) Temporal patterns: VeTo provides a time window op-
erator to express a temporal relation between events within a
sequence. Its aim is to represent the fact that some statements
are only true over a given period of time. The digit operand
is the time window value over which the pattern has to be
matched. After this time window, the pattern is invalid. For
example, in Rule 5 the VeTo block stops a flooding attack
as soon as 1000 INVITE messages arrived in less than one
second time window.
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Rule 5 The VeTo protection block against a flooding attack
using temporal event patterns.
DEFINITION SIPMessages BEGIN
WHEN sip:request.method @MATCH "ˆINVITE" ->

LET: GLOBAL EVENT ev_invite;
DEFINITION END

VETO Flooding USES SIPMessages BEGIN
([ev_invite[*1000],1]) -> DROP;
VETO END

D. Variables scope and extent

In VeTo, each variable has a scope and an extent. The scope
determines where the variable and its value are associated. The
extent determines when the value is associated to the variable
at runtime. The scope of a VeTo variable is related to its
definition block. A VeTo variable is visible over all protection
blocks that reference its definition block.

The extent of a VeTo variable is either message or dialog.
A SIP dialog is defined using the tuple (Call ID, To Tag,
From Tag) fields of a SIP message. Typically, the prede-
fined constants named as sip:request.*, sip:response.* and
sip:headers.* have an extent over a message. They take a new
value each time a new SIP message is observed and parsed.
The variables defined into a definition block and used by a
prevention block have an extent over a dialog. A variable
that takes its values over multiple dialogs is defined using
the keyword GLOBAL followed by its type and name.

E. Illustrative Examples

We illustrate the use of the VeTo language over well
identified SIP vulnerabilities found in the literature. We have
selected three types of vulnerabilities with different degrees
of complexity. The vulnerability preventions described below
share the definition block depicted in Rule 6.

1) Malformed messages: VeTo provides the capabilities to
address malformed messages according to two approaches
[28]. The first approach is the misuse prevention, where the
rules describe a known discovered malformed pattern within a
given SIP message. For example, it is reported on several VoIP
security mailing lists [29] that many hardware SIP phones
are sensitive to SIP messages with illegal size fields value.
The protection block described in Rule 7 depicts a prevention
against a vulnerable SIP message where the size of the date
header is greater than an allowed size of 120 bytes. The size
of the date field is computed using the symbol & that precedes
the field name sip:headers.date.

Rule 7 A prevention against a vulnerable OPTIONS message.
VETO IllegalSize USES SIPDefs BEGIN
(ev_Options) -> IF (&sip:headers.date @GE "120")
{

DROP;
}
VETO END

The second approach is a specification based description of
SIP messages. In this approach a set of VeTo rules enforce the
ABNF of SIP messages as they have been specified in RFC

3261. The advantage of this approach is that it protects a SIP
network from unknown or undiscovered malformed patterns
that may crash deployed SIP implementations. However, using
this approach, numerous false negatives may occur since some
implementations introduce their own specific SIP fields that
do not exactly follow the SIP specification. Rule 8 depicts an
example of an INVITE SIP message with a non compliant
Call-ID header that will be dropped. The rule in the definition
block MalformedDefs creates the event 𝑒𝑣 𝑚𝑎𝑙𝑓𝑜𝑟𝑚𝑒𝑑 when
a Call-ID header does not match a compliant Call-ID regular
expression.

Rule 8 A prevention against a non compliant Call-ID SIP
messages field.
VETO EnforceSpec USES SIPDefs,MalformedDefs BEGIN
(ev_Invite(ev_Malformed)) -> DROP;
VETO END

2) Flooding attacks: In [10], the author was interested in
SIP-specific DoS attacks by flooding SIP entities with SIP
compliant messages. He proposes a detection method that
relies on thresholds. The trivial one is a threshold on the
number of INVITE messages allowed per dialog to a particular
URI. Rule 9 describes the prevention block specifying this
type of threshold. Firstly, we track the target URI of each
INVITE message using the STORE action that acts on the
set type variable targets. We count the number of INVITE
messages sent to each target from the collection using the
action APPLY that acts on the counter type variable tar-
gets.count. The targets.count will be decremented by 1 every
2000 milliseconds. Finally, we check the number of observed
INVITE messages sent to a specific target over all the existing
dialogs against an allowed threshold. If the threshold value is
crossed, we drop all subsequent INVITE messages.

Rule 9 Prevention from an INVITE flooding attack against a
particular target URI.
DEFINITION FlDefs BEGIN
LET: GLOBAL SET[sip:headers.uri.addr] targets;
LET: GLOBAL COUNTER(1,2000) targets.count;
DEFINITION END

VETO FloodingTarget USES SIPDefs,FlDefs BEGIN
(ev_Invite) -> {

STORE:targets;
APPLY:targets.count;
IF (targets.count @GE 10) {

DROP;
}

}
VETO END

The most interesting threshold is the upper bound of the
number of allowed transactions per node. Firstly, we define
a collection that tracks the transactions per node. We also
define a counter to track their number. Rule 10 describes the
prevention block for this vulnerability.

3) DoS using broken handshaking: This attack is based on
broken SIP handshaking where the attacker sends an INVITE
request and then ignores the 200 OK response refusing to
send the ACK. The attacker proceeds with a large number of
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Rule 6 Examples of VeTo definition blocks.
DEFINITION SIPDefs BEGIN
WHEN sip:request.method @MATCH "ˆINVITE$" -> LET: GLOBAL EVENT ev_Invite;
WHEN sip:message.method @MATCH "ˆOPTIONS$" -> LET: EVENT ev_Options;
WHEN sip:request.method @MATCH "ˆACK$" -> LET: EVENT ev_Ack;
WHEN sip:request.method !@MATCH "ˆ$" -> LET: EVENT ev_Request;
WHEN sip:response.code @MATCH "ˆ200" -> LET: EVENT ev_200OK;
DEFINITION END

DEFINITION MalformedDefs BEGIN
WHEN sip:headers.Call_ID !@MATCH "ˆ\s*(Call-ID|i)\s*:\s*w+[@w+]$" -> LET: EVENT ev_Malformed;
DEFINITION END

Rule 10 Prevention from a transaction based flooding attack.
DEFINITION FlDefs BEGIN
LET: SET[sip:headers.branch] transactions;
LET: COUNTER(1,60000) transactions.count;
DEFINITION END

VETO FloodingTr USES FlDefs,SIPDefs BEGIN
(ev_Request) -> {

STORE: transactions;
APPLY: transactions.count;
IF (transactions.count @GE "10") {

DROP;
}

}
VETO END

broken initiations in order to exhaust the target resources. Rule
11 shows the prevention block for this vulnerability. The first

Rule 11 Protection block against the broken handshaking SIP
attack.
DEFINITION HandSDefs BEGIN
LET: SET[sip:headers.from] blackList;
DEFINITION END

VETO VulHandShacking USES HandSDefs,SIPDefs BEGIN
(ev_Invite,*,(ev_200OK,˜[ev_Ack,1])) -> {

STORE: blackList;
}
(*) -> IF (blackList @contains sip:headers.from) {

DROP;
}
VETO END

event rule in the veto block VulHandShacking defines an
event pattern to detect a 200 OK response without any ACK
message arriving within a time window of one second. In
such case, it feeds the set type variable blackList with the
URI of the sources of the uncompleted handshake messages.
This list is used by the second rule from the same VeTo
block to prevent the attacker from reaching targets by sending
more broken handshakes or SIP messages. The symbol * is
a Kleen closure to denote the occurrence of any event within
the current dialog.

V. AUTOMATIC GENERATION OF PREVENTION

SPECIFICATIONS

Building and maintaining prevention rules using the VeTo
language may be a time consuming and error prone task, espe-
cially when addressing an important number of vulnerabilities
discovered using a fuzzing tool. The discovered vulnerabilities

Regular 
Expressions

Data Base

VeTo
Rules

Fig. 1. Overview of modules and processing flow for automatic generation
of VeTo specifications.

using such process are usually based on a single exploit
message with a malformed field or sequence of vulnerable
messages. To reduce this effort, we have designed a generation
method to produce VeTo specifications targeting those vulner-
able messages. The method mainly characterizes a malformed
field within an exploit message or the vulnerable sequence
of messages and generates a set of VeTo rules specifications
to prevent their exploit. The generated VeTo rules are then
deployed and maintained on the SecSIP engine to be applied
against the SIP traffic exchanged between the outside network
and the inside network where SIP devices are deployed. Figure
1 depicts the overall architecture of our solution including the
automatic generation of VeTo specifications.

The solution relies on generating a set of candidate reg-
ular expressions to match a malformed pattern within a SIP
message, and evaluate their quality to ensure that their are
specific enough to only match exploit messages. As input, the
generation algorithm takes only a set of labeled SIP messages
which are tagged as Exploit or Normal. Exploit messages are
typically obtained from a fuzzing tool and assessed to incur
an attack on a specific SIP device. In this work, we have
used the KIF fuzzing tool [4] to obtain such sequences of
labeled messages. For each exploit message, we invoke a SIP
parser which is generated by ANTLR (a parser generator) from
the SIP protocol specifications (ABNF rules of RFC 3261).
Whenever an exploit message is parsed, a parsing error is
raised and indicates the malformed field identifier within the
exploit SIP message. The parsing error is due to a violation
of the SIP protocol syntax rules or an unknown field. Parsed
exploit messages are grouped according to their respective
malformed fields. Each group contains messages that share the
same malformed field identifier but with different malformed
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strings.
After parsing, we generate from each exploit message

within the same group, a set of regular expressions (regex)
that match the malformed field. This set of regular expressions
is generated according to Algorithm 1 which takes as input
the malformed string identified by the SIP parser.

Algorithm 1 Candidate regular expressions generation.
if it’s a number then

replace with \d or keep the token (0.5 prob)
else if it’s a character then

replace with \w or keep the token (0.5 prob)
else if it’s a sequence of numbers then

replace with \d+
else if it’s a word then

replace with \w+
else if it’s a reserved SIP protocol tag then

replace with (”sip:”, ”From” , ”To”, etc)
else

keep the token as a literal regex;
end if

The generated set of regular expressions which match a
specific malformed field are denoted as candidate regular
expressions. Figure 2 shows an example of a malformed SIP
message and the set of candidate regular expressions. Herein,
the malformed field is the request URI which contains a non
compliant character \255.

INVITE \255lnphocne@127.0.0.1 SIP/2.0
Accept:application /sdp
Via:SIP /2.0 /TCP en.sdfn.pge.opp:588 ;branch=z9hG4bK74b76
From : < sip:5678@27.8.6.3:5268>;tag=gUNHkuLV
To  :< sip:xpnphone@27.8.6.3:5268>
Call-ID: xWKEu5NYeMwJG
CSeq: 37255 INVITE
Max-Forwards: 777
Contact: <sip:5678@727.8.9.5:5669>
Content-Type: application/sdp

  Path :
  [evaluator, sip_message, request, request_line, request_uri, sip_URI]
  Malformed Field :
  \255lnphocne@127.0.0.1

Parsing error

Candidate regular expressions

Fig. 2. Example of a malformed SIP message and the set of candidate regular
expressions.

In a second step our algorithm identifies the group of regular
expressions which best characterize the underlying malformed
field with respect to normal messages.

A. Regular expressions optimization

Given the set of candidate regular expressions, we derive the
best regular expressions which only cover exploit messages.
Regular expressions matching a normal message are removed
from the candidate set. We use a genetic algorithm [30]
to optimize the set of candidate regular expressions. The
algorithm considers each candidate regex as a chromosome

which is evaluated using an appropriate fitness function. A
selection algorithm is then applied to select the best regex.
Finally, we apply a set of recombination and mutation rules
on the selected regex to generate a new generation of regular
expressions. The cycle of evolution is repeated until a defined
number of evolutions is reached. In our work, we fixed this
number to 10 generations. The overall process as specified by
Algorithm 2 is repeated until we get the best set of regular
expressions.

Algorithm 2 Genetic Regular Expression Generation.
Generate a set of Regex using predefined rules
for i from 1 to number of generations do

Test the set of regex against normal and exploit messages
Assign a score to each regex using a fitness function
Apply the selection algorithm
Recombine regex of selected parents
Apply mutations on the new population of regex

end for

We have defined a suitable fitness function to evaluate the
quality of each generated regex. Our fitness function combines
the number of exploit messages covered by the regex and its
length. The idea behind, is that the best regex covers many
exploit messages and has a short length. The fitness function
𝑓 is defined as follows:

𝑓(𝑟𝑒𝑔𝑒𝑥) = 𝑛× (1 + (
𝑎𝑣𝑔 − 𝑙

𝑎𝑣𝑔
)) (1)

where 𝑎𝑣𝑔 is the average length of the regular expressions, 𝑛
is the number of exploit messages covered by regex and 𝑙 is
its length.

Our genetic approach to generate regular expressions relies
on a selection algorithm to determine the best candidate to
be parent of new generated regular expressions. Algorithm 3
details the selection process.

Algorithm 3 Selection algorithm.
P: the vulnerable pattern identifier
MMS(P) = set of exploit messages with respect to P
CRES(P) : set of candidate regular expressions with respect
to P
CRES(P) =
while MMS(P) not empty do

Evaluate the score of each regex
Select the regex with the higher score
Add the selected regex to CRES(P)
Remove from MMS(P) all exploit messages covered by
the selected regex

end while

The last mechanisms used by our genetic algorithm to
generate optimized regular expressions are the reproduction
operations. These operations are used to recombine selected
parents to generate new regular expression. We have used two
operations depicted in Algorithm 4.

The first operation combines the parents regular expressions
without mixing them using the OR, AND and + symbols. The
second operation mixes the two parents regular expressions
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Algorithm 4 Examples of reproduction operations.

First operation: X∣Y, XY, X+Y?
Second operation: crossover
X: SIP:XXX@\d.\d.\d.\d. ppp
Y: SIP:YYY@\d.\d.\d.\d. fff
XY: SIP:(XXX∣YYY)@\d.\d.\d.\d (ppp∣fff)

Fig. 3. Functional architecture of the SecSIP engine.

by using a crossover operator to obtain a mixture of them.
While the genetic process terminates and we obtain the best set
of regular expressions which only matches exploit messages,
the algorithm generates a set of VeTo rules to specify events
over these regular expressions. These events are then used to
generate prevention blocks as described in section IV.

VI. SECSIP IMPLEMENTATION

In this section, we discuss various implementation details
of SecSIP as a runtime of authored VeTo specifications to be
applied against SIP traffic. The overall architecture of SecSIP
[12] is depicted in Figure 3.

The role of the Input/Output Layer is to capture packets
from the network, and to pass them to the SIP Parser. Once
the processing of the packet by the SecSip Rules Engine
is finished, the Input/Output Layer is instructed to either
release the packet into the network, or to discard it. The
SIP Parser analyses the packet, and extracts the value of
relevant SIP fields, it then hands over the extracted data
to the EventController, in the form of a SIP Tree. The
Event Controller uses event definitions from the loaded Rules
Specification, and generates events in accordance with the
presence, or value of certain elements of the SIP Tree. The
VeTo Rules Specifications are data structures that represent
sets of filtering rules, in an un-compiled format, which allows
them to be easily exported and imported to SecSip. When a
Rules Specification is loaded by the Rules Engine, it is first
compiled, in order to offer optimized execution. The Rules
Engine is the main component of SecSip. Its role is to track
the state of the SIP dialogs that go through the firewall, and to
block them as soon as an attack pattern is detected. To do so,

it uses a graph compiled from a VeTo Rules Specification, and
events generated by the SIP Parser. The state of each active
dialog is stored internally by the engine. The HTTP Server
and CLI Agent provide a way for administrators to interact
with SecSIP while it is running, either monitoring its status, or
changing the filtering rules. The CLI Agent provides a shell-
based interface to telnet clients, whereas the HTTP Server
provides a web-based interface to web browsers, which can
communicate with SecSIP through SOAP requests. The SOAP
Server handles requests from SOAP clients, converting VeTo
specifications from and to XML trees.

A. SIP messages handling

When a packet reaches SecSIP, it first has to be intercepted
so that it can be processed. The packet is then passed to
a SIP parser, which grammatically decomposes it in SIP
and SDP fields. These fields can then be matched against
regular expressions defined in VeTo rules, and events are then
generated. The generated events are fed into the event graph as
tokens. The tokens are propagated through the graph until an
action is reached, or until the graph state does not allow them
to be propagated any further. Actions that have been reached
are executed, and they can cause the packet to be dropped.
Finally, the packets that were not dropped are released, and
routed into the network.

The first step of SIP packets filtering is their evaluation
against definition blocks. These blocks allow to declare the
variables that are used to track the state of a dialog and
the different known vulnerability schemes. By default, these
variables are tied to a specific dialog, but their scope can
span all dialogs observed by SecSIP, when declared with the
GLOBAL keyword. Variables can be of several types and can
be static or dynamic. Static variables take their value from
SIP and SDP fields or are explicitly defined in context blocks,
while the value of dynamic variables is set by logic (inherent
to the type of the variable, or set by actions contained in VeTo
blocks).

A variable has one of the following types:
∙ collection: a collection variable is declared with the name

of a SIP field as a parameter. Each time the variable is
updated, the value of the field for the current packet is
added to the collection. It is then possible to check if a
specific value is contained in the collection,

∙ counter: a counter variable starts with a value of 0, and
is increased each time the variable is updated. A counter
variable also has a ”cooldown” facility: the counter can
be periodically decreased by a user-defined amount,

∙ timer: a timer variable has a user defined value, and when
set, will start to count down until it reaches zero,

∙ state: a state variable can be used to implement a user
defined state machine, and to take actions based on the
current state,

∙ event: an event variable is a flag that can be raised
conditionally. It is used by SecSIP to match patterns
defined in VeTo prevention rules.

B. Event patterns handling

In order to track the event patterns, we use an event graph,
inspired by active databases [31]. In this section, we detail the
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structure of the graph, then explain how it is built, and finally
go through the execution of the graph.

1) Graph structure: Building one single graph for the
complete set of rules allows SecSIP to factorize as much
as possible of the event patterns, and reduce the number of
necessary tests. All events or sub-patterns that are common to
several event patterns only have to be tracked once.

This way, instead of having to maintain one state machine
per event pattern per SIP dialog, we only maintain one global
graph for all dialogs, which also reduces memory usage.

The event graph is represented using three main structures:
graph nodes, links between nodes, and tokens (which represent
the flow of events through graphs).

In the event graph, each node represents an event, or a
composition of events. Single events are the bottom nodes
of the graph with only outgoing edges. Each node above and
up to the top adds a level of composition. At each top node
of the graph with only incoming edges, we have one of the
patterns that the graph represents, and the list of conditions
and actions associated with the pattern.

Nodes are connected by links, which also carry a meaning.
Therefore two nodes can be connected by multiple links with
different meaning, depending on the destination node type.

Each node also carries a list of tokens, which represent
events or compositions of events as they travel through the
graph. Tokens originate from the bottom nodes of the graph
each time an event is ”raised”; and each time a token reaches
one of the top nodes, the conditions and actions referenced in
this node are processed.

Rules 12 show an example of set of rules whose event graph
is described in Figure 4.

∙ bottom nodes of the graph represent simple events. ”*” is
the ”any” event, which always generates a token, for each
received packet, and ”˜ev2” is a negative event, which
generates a token when event ”ev2” was not triggered
by the current packet,

∙ action nodes are on the top of the graph. Each action
node contains a reference to one of the Veto rules (in
this example the three rules are only composed of the
”drop” action),

∙ links between nodes are of different colors, depending
on the type of the link: left (L), right (R), start (S) and
trigger (T),

∙ the ”ˆ” node represents the embedded event
”(ev1(˜ev2))” which means that ”ev1” and
”˜ev2” must happen at the same time.

∙ the ”{5}” node is a repeat node, meaning that the left
token (ev2) must be repeated exactly 5 times to be
propagated,

∙ the ”(,3)” node is a timer node, meaning that its left
token (ev2) must happen within three seconds after the
preceeding token (ev1). The ”any” event is used as a
trigger in the cases we negate the timer, and we don’t
want the left token to be received within the specified
time,

∙ the ”,” node is a composite node, meaning that its left
token (ev1) must happen right before its right token
((ev2, 3)).

Each token carries three pieces of information:

Rule 12 An example set of VeTo prevention rules.
(ev1, [ev2, 3]) -> DROP;
(ev1(˜ev2)) -> DROP;
(ev2{5}) -> DROP;

Fig. 4. The event graph produced from the set of rules defined in Figure
12.

∙ the start packet number, which is the sequence num-
ber of the earliest packet for which the token is valid
(inclusive),

∙ the end packet number, which is the sequence number
of the latest packet for which the token is valid, plus one
(exclusive),

∙ a reference counter, which is increased each time a
token is pushed through a link, and decreased each
time the token is discarded. When it reaches zero after
discarding a token, the memory used by the token is
freed.

The sequence number of a packet is determined by a per-
dialog counter. Each time a packet is captured, the value of
the counter is associated with the packet, and the counter
is incremented. The idea behind this is that tokens should
represent intervals for which events (or sequences of events)
are valid. So, when a token hits an action node, its interval
will span the complete attack pattern that was described in the
configuration. For instance, if event ev1 was raised by packet
0, and event ev2 was raised by packet 1, two tokens would
have been created: one with interval [0, 1[ for ev1 and one
with interval [1, 2[ for ev2. If those two tokens were to
be pushed to a composite node expecting ev1 to happen right
before ev2, it would discard those two tokens, and create a
new one, with interval [0, 2[ and push it further through
its links to other nodes of the graph.

Each node may contain a list of links. One link contains a
reference to the node it connects to, as well as the type of the
link. Link types are as follows:

∙ left and right link are ”normal” links, through which
tokens usually travel. Their meaning is not necessarily
different. For instance, links to an embedded node (in
which tokens have to be simultaneously propagated),
which token came from left or right does not matter,
whereas in composite links, the left token has to happen
before the right token,

∙ the tick link is used by nodes that are not only triggered

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



LAHMADI and FESTOR: A FRAMEWORK FOR AUTOMATED EXPLOIT PREVENTION FROM KNOWN VULNERABILITIES IN VOICE OVER IP SERVICES 11

by the tokens they control. In the case of a timer node,
the node might have to time out if no token was pushed
to it, in which case a left or right link is not an option,

∙ the start link is used to inform the timer node when the
timer has to start, and this cannot be done by a left or
right link, as the timer has to start before the token it
controls is first received.

Nodes of the graph represent single events (bottom nodes), or
composition of events that represent the event patterns. Each
top node of the graph represents one of these complete patterns
that trigger rule actions. Each time a token is pushed to a
node, it is queued for execution. Each type of node has its
own execute function, that determines how and when tokens
should be propagated. The following types of nodes are used:

a) Bottom Node: A bottom node produces a token each
time the referenced event is detected in a packet (or absent
from it, if the negative flag of the node is set to ”true”).

b) Action Node: An action node executes the rules that
it references, each time a token is passed to it. Action nodes
are the leaves of the graph. A rule consists of a condition
(optional) and of one or more actions. If there is no condition,
or if the condition is true, the actions are executed sequentially.
An action node takes its input from a left link.

c) Composite Node: A composite node takes input from
one left link and one right link. If a token from the left link
immediately precedes a token from the right link, they are
merged in a new token (union of the two previous tokens),
which is then propagated to children of the current nodes.

d) Embedded Node: An embedded node takes input from
one left link and one right link. If a token from the left
link overlaps with a token from the right link (meaning that
the events happen at the same time, at least partially), they
are merged in a new token (intersection of the two previous
tokens), which is then propagated to children of the current
nodes.

e) Repeat Node: A repeat node has a minimum, and an
optional maximum value. It takes its input from a left link, and
a tick node is used to trigger the execute function each time
a packet is received. When the count of packets from left link
is within the min and max range, a new token is propagated,
which spans the matched repeat sequence.

f) Timer Node: A timer node controls wether a token
arrives within a certain period of time, defined in seconds.
When it receives a token on its start link, it registers the time
at which it arrived, and it will forward the first token it receives
on its left link only if it is received within the defined period.
It can also be set to negative, in which case it will create a
new token and propagate it if no token was received on the
left link during the defined period of time. In this case, it uses
a tick link to be triggered each time a packet is received.

2) Building the Graph: Rules are added sequentially to the
graph. Each time a node insertion is required, SecSIP first
checks if a similar node already exists in the graph. If such
a node exists (same parameters, same parents), it is simply
reused.

Once each node has been added to the graph, the path length
of each of them is computed. It is set to zero for action nodes,
and increased by one for each traversed node. For a node that

TABLE I
SIZES (LOC) OF STATL, SNORT AND VETO SPECIFICATIONS FOR

PREVENTING AGAINST DIFFERENT VULNERABILITIES.

Vulnerability STATL Snort VeTo

IllegalSize 8 1 3
EnforceSpec 7 1 2
FloodingTarget 22 1 8
FloodingTr 22 - 8
VulHandShacking 21 - 7

has multiple paths to action nodes, the highest value is used
as the path length.

Then, a list of bottom nodes, sorted by decreasing path
length is built.

3) Event Graph Execution: When a packet is received,
SecSIP first updates the events defined in the definition blocks,
as seen previously. Then, the execut function of each bottom
node is called.

If the execution of a node causes a token to be produced,
it is propagated to other nodes, using the list of links held
by the executed node. The propagation is done by inserting
the destination node into a triggered node list, sorted by
decreasing path length.

Then, each node in the triggered node list is executed, which
can cause new nodes to be added to the list, until the list is
empty.

4) Actions Execution: Action nodes are top, or terminal
nodes of the graph, they do not produce tokens, but instead
hold a list of rules, each of which can contain a condition,
and one or more actions.

When an action node is executed, it processes its rules
sequentially. First, it checks if a condition is present and if
it is true, then it executes each action defined in the rule.

The following action types exist:

∙ the STORE action is used to add a value to a collection,
using the value of a SIP field of the current packet,

∙ the ASSIGN action is used to set the value of a singleton,
state, counter, or timer variable, using either the value of
a SIP field of the current packet, or a used defined value,

∙ the APPLY action is used to update the value of a counter
or timer variable, using the logic inherent to the counter
or timer types,

∙ the DROP action is used to discard a packet, to prevent
it from reaching its target.

VII. EVALUATION

In this section, we present the evaluation of the VeTo
language regarding its expressive power and the performance
of its underlying prevention tool.

A. Qualitative analysis

We have compared the complexity of the VeTo, STATL and
Snort languages regarding the number of line of code required
to specify the different vulnerability exploitation preventions
described in section IV-E. The result is given in Table I.

We note that we only counted the rules and the event block
headers for VeTo specifications. We observe that the Snort
language is not suitable to prevent from the exploitation of all
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Fig. 5. Number of established calls (a) and call establishment delays (b) under increasing number of calls in terms of INVITE/second, without and with a
deployed SecSIP and Suricata runtimes.

vulnerabilities due to its stateless nature. However, it is useful
to prevent simple attacks like buffer overflow or flooding.
Snort based preventions are limited since a signature specifies
the attack occurrence rather than the vulnerable behaviour of
the SIP protocol. The STATL language specifications are up
to 3 times longer than the corresponding VeTo specifications,
because each vulnerability needs its own state machine to be
completely described.

B. Experiments

We have setup a testbed of 3 machines each with a core 2
CPU cadenced at 3.4GHZ and 2 GB of RAM. The three hosts
are connected through a 100 Mbits switched Ethernet. One
host acts as a SIP proxy running version 1.4 of an OpenSIPS
server. The two others act as SIP user agents (UA). The
SIP UAs are implemented using the SIPp [32] tool which
allows to write customised SIP protocol interactions as XML
documents. The SecSIP tool [12] acts as a support runtime
of the VeTo language and implements required features to
intercept SIP message in real time and executes prevention
specifications. Our performance metrics are the number of
established calls and their respective establishment delays. A
call is established when the 5 SIP messages INVITE, 100, 180,
200 and ACK are delivered correctly between the two UAs.
We compared the performance of SecSIP with the Suricata
IPS tool [33] which is able to run Snort based rules.

1) Base capacity and overhead: We have first measured
the performance of the SIP proxy and the UAs without any
prevention support neither SecSIP nor Suricata. In a first
experiment, we have deployed SecSIP and in a second one
we have deployed Suricata on the same host as the SIP proxy
to intercept SIP traffic using the nfqueue interface and running
the prevention rules. In each experiment, we varied the number
of call attempts from 10 to 1000 INVITE/second with a step of
100. SecSIP runs the prevention block EnforceSpec depicted
in Rule 8. Suricata runs a single rule which applies a simple
regular expression on an INVITE message.

Figure 5(a) shows the number of established calls between
two user agents through an OpenSIPS SIP proxy with and
without a deployed prevention runtime running VeTo rules.
We observe that the base capacity for the SIP proxy without
SecSIP is around 800 CPS. The call handling capacity is
dropped to 500 CPS when enabling the Suricata tool and it is
dropped to 300 CPS when enabling SecSIP. SecSIP introduces
more overhead than Suricata because it inspects and parses
more deeply SIP messages when applying prevention rules.
However, Suricata only applies string based regular expression
matching over the intercepted message.

Figure 5(b) depicts the call establishment delay which is
measured on the caller (UAC) between the sending of the
INVITE message and the receipt of its respective ACK. We
observe a mean delay close to 0.8 ms while the SIP traffic
goes only through the SIP proxy. The delay increases a little
more when deploying Suricata and it remains close to 1 ms.
When we deploy SecSIP, delays remain between 1 and 10 ms
with call attempts lower than 800 INVITE/second. However,
the delay becomes more important under heavy call attempts.
It is close to 100 ms under 900 concurrent call attempts.
The overhead introduced by SecSIP appears important than
Suricata but remains acceptable since the establishment delay
remains far below the transaction expiration delay of 32
seconds. We have also verified that each INVITE and 200
OK messages and their respective responses 100 Trying and
ACK messages fit within a time window lower than 500 ms.

2) Effect of the number of VeTo blocks: In a second
experiment, we varied the number of VeTo prevention blocks
to be handled by SecSIP between 10 and 1000 prevention
blocks with a step of 100. In each step, we duplicate the
IllegalSize prevention block depicted in Rule 7. We fixed the
number of call attempts to 300 INVITE/second.

We observe in Figure 6 that the number of established
calls decreases drastically and the average call establishment
delay increases exponentially when the number of deployed
VeTo blocks increases. These results represent the worst cases
since for each SIP message all the deployed VeTo blocks are
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Fig. 6. Number of established calls (a) and call establishment delays (b) under increasing number of VeTo prevention blocks with a deployed SecSIP runtime.
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Fig. 7. Prevention against an INVITE messages based flooding from a single
source.

applied on it since we have not activated the context feature
provided by the VeTo language. However in a real scenario
where context is active, the performance should be better since
only few prevention blocks will be activated on an intercepted
SIP message according to its target.

3) Flooding prevention: In this scenario, we deployed on
SecSIP the prevention block depicted in Rule 9. This block
prevents a source from flooding a target with a high INVITE
message rate. The flow of INVITE messages originates from a
single source with an increasing rate of 1 every 2 seconds. The
starting rate is fixed at 1 INVITE/second. Figure 7 contains
the measurements. We observe that the SecSIP runtime only
allows a number of concurrent messages equal to 10. When an
attack source exceeds this number and its traffic rate becomes
high, then it is blocked and every incoming message from
the attack source is dropped. The attack source has to wait
a period of time before any of its incoming traffic will be
forwarded again.

VIII. CONCLUSIONS

SecSIP is a framework that prevents from the exploitation of
existing vulnerabilities in SIP-based networks. SecSIP uses a
domain specific language called VeTo to code prevention spec-
ifications. The VeTo language is stateful and it couples rule and
an event-based approach. It includes instructions to record and
maintain SIP protocol histories over messages, transactions
and dialogs. Our approach was extended to automatically
generate VeTo specifications using a genetic algorithm. The
produced specifications are generated from network traces of
messages known as exploiting a vulnerability. Such messages
may be identified by a fuzzing tool or provided by security ad-
visors and/or administrators. This paper described the overall
framework to specify, generate and execute VeTo prevention
schemes. We implemented and evaluated the different compo-
nents of the framework. We showed that the SecSIP overhead,
both in terms of a call establishment delay and the number of
established calls, remains sufficiently low to operate efficiently
in most enterprise networks. We demonstrated the usage of the
VeTo language through several types of vulnerabilities behind
flooding and DoS attacks.

Current VeTo specifications only address known vulnera-
bilities since our aim was to protect a SIP network from
discovered and unpatched vulnerabilities. Unknown vulnera-
bilities can be expressed in VeTo and deployed as soon as they
become known. Other techniques, like software testing and
binary analysis have to be used in conjunction to prevent from
unknown and zero-day vulnerabilities. In future work, we hope
to demonstrate formal modeling techniques in order to verify
conflicts between VeTo rules and check their consistency,
completeness and compactness. In particular, we are interested
in tree automata techniques to automatically analyze and
validate new VeTo rules before integrate them with previous
existing rules.
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