

MANAGEMENT OF DYNAMIC NETWORKS AND SERVICES

Joint team with Université de Lorraine & CNRS

MADYNES Nancy – Grand Est Research Centre

Permanent members & area of expertise

- Laurent Andrey: vulnerability discovery
- Rémi Badonnel: security automation
- Isabelle Chrisment: overlay monitoring
- Laurent Ciarletta: co-simulation & service discovery
- Olivier Festor: monitoring & security automation
- Abdelkader Lahmadi: security automation & vulnerability discovery
- Emmanuel Nataf: Information models, configuration & sensor networks monitoring
- André Schaff: protocol engineering
- Ye-Qiong Song: Mac layers, cross-layer optimizations, QoS, real-time networks
- Thomas Silverston: IPTV, network monitoring

Applied and Experimental Research in Networks and Services Organization, Management and **Security**

Managing network vulnerabilities

- Discovery
- Exploitation avoidance/mitigation

Detecting malfunction and misuse (monitoring)

- Honeypots, traffic analysis

Improving service and network operation in Smart–spaces

VoIP services

P2P Networks

MANFTs

- Co-simulation
- Service discovery

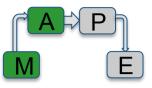
Analyze Plan Execute Monitor X 000 X Sensor Networks 2

Our Value

- 7 successful PhDs & 1 Habilitation degree in the reporting period
- Established & recognized research in Network & Service Management
 - Leaders of the EMANICS Network of Excellence (2006-2010)
- Recognized software development & patent
 - NDPMon (the reference in IPv6 Neigbor Discovery Protocol Monitoring),
 - KIF (advanced Fuzzing-based vulnerability detection),
 - Hinky (a collaborative SPIT detection, +40.000 active users)
- Platforms : High Security Lab & EMANICSLab
- Joint Team with LIRIMA in Yaounde on Configuration Management
- Established long term external cooperations
 - CISCO, Alcatel Lucent
 - 5 FP7 projects including Private Public Partnership
- Strong international activities and high visibility
 - Academics : IEEE TNSM, IJNM, JNSM, CSNM, IM, NOMS, ...
 - Standardisation : Chairing the IRTF Network Management Research Group
 - Organizations : IFIP TC6, WG 6.6 FIA Future Media Internet task Force, ICT Labs

Outline

- 2. Vulnerability discovery
- 3. Vulnerability exploitation prevention
- 4. Network monitoring
- 5. Future work (2012-2015)
- 6. Summary

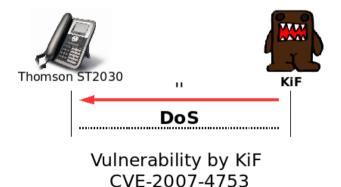


Vulnerability Discovery

(ALU Joint lab, FIWARE PPP)

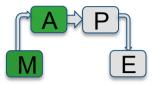
Vulnerability Discovery - Challenge

Vulnerability [RFC2828]

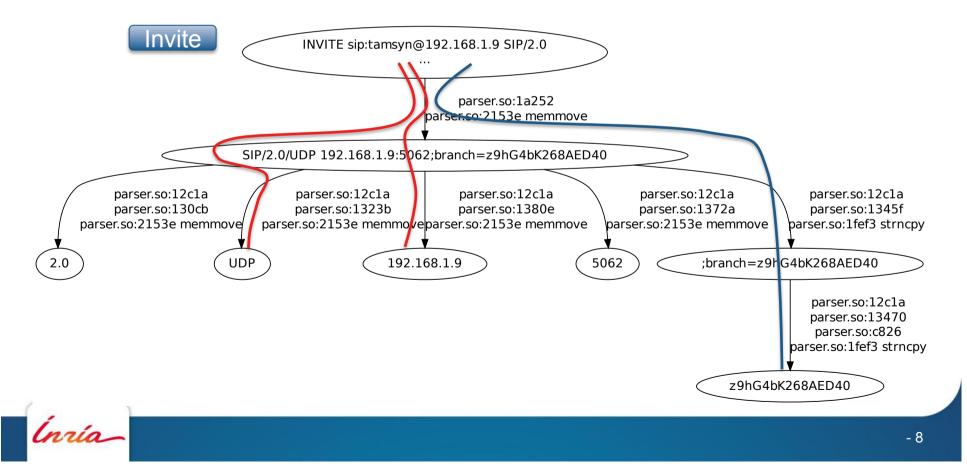

A flaw or weakness in a system's design, implementation or operation and management that could be exploited to violate the system's security policy.

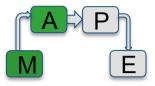
Our approach: Protocol Fuzzing

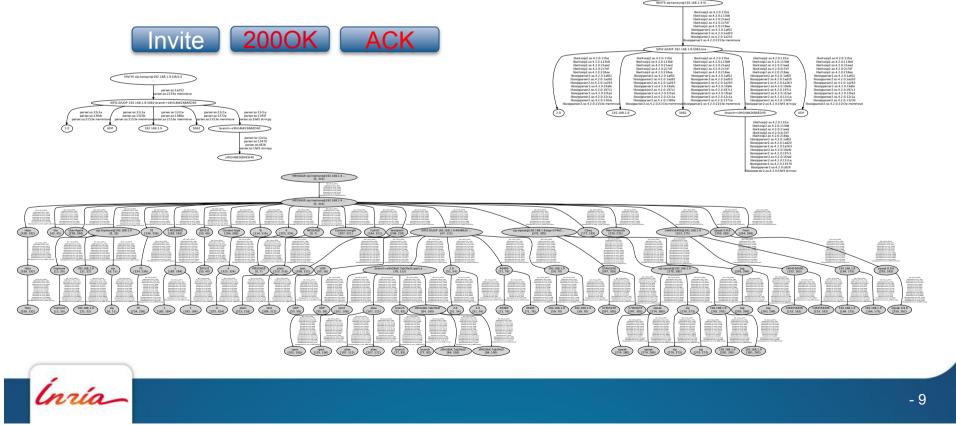
- Large generation & injection of invalid, random or unexpected messages
- 10+ fuzzers in the academic scene and on the market
- Only ours does stateful fuzzing (e.g. session mgmt): KIF [RAID 2008]


Additional addressed challenges

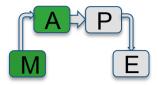
• Optimize the use of fuzzing strategies




Vulnerability Discovery - Approach


- Grey box approach
- A backtraces model for feedback collection & analysis

Vulnerability Discovery - Approach



- Power & Entropy metrics to measure impact
 - Power: #values targeted by a message in one backtrace
 - Entropy: #backtraces hit bit one message
 - Link with syntax to build fuzzing strategies

Vulnerability Discovery - Impact

12

KiF PROTOS

- A powerful model to evaluate relative impact:
 - Fuzzers

. .

- Fuzzing sets
- Fuzzing Strategies
- KIF is more powerful that its competitors
 - o stateful fuzzing helps

10 × 8 Power × 6 4 ¥ * 2 0 Ô 1 2 3 4 5 6 Entropy

- Supported protocols
 - IPv6, PDF, DNS, DHCP, SIP,

Protection against Vulnerability Exploitation (ANR VAMPIRE, FP7 Univerself)

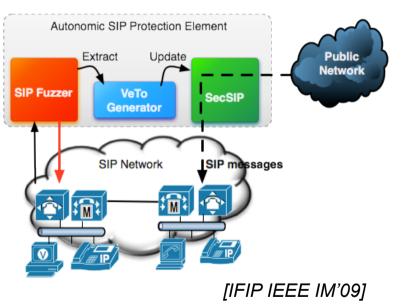
Vulnerability Exploitation Prevention - Challenge

Context

- Many vulnerabilities are never patched
 - No patch ever issued
 - Patch never applied in many of devices
- Challenge
 - Protect vulnerable systems
 - Automate the generation of protection policies from vulnerability descriptions
 - Design a generic prevention engine

- Achievements
 - Security automation modeling [NOMS'12]
 - Risk Management
 - SVM-based risk evaluation [NassarPhD'09]
 - Adaptive Counter-measures in SIP [CNSM'10,11]
 - Entreprise SIP
 - P2P SIP
 - Cloud SIP
 - Automated prevention rules generation

Vulnerability Exploitation Prevention -Approach


- An event-based prevention DSL [IM'11] •
- Genetic algorithms based generation of patterns from vulnerable messages [TNSM'12]
- A generic prevention engine •

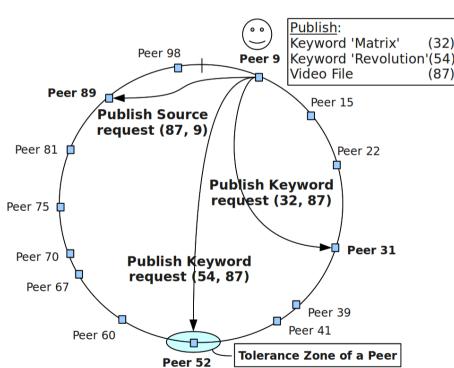
Vulnerability Exploitation Prevention -Impact

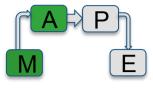
- 0 days to protect an unpatched device
 - Through policy generation automation
- An embedded prevention engine
 - o Generic
- Device specific protections activation
 - When coupled with the fingerprinting engine
 - Average 10 active rules per device
 - Rules for 16 devices

Demo available during the private session !

Monitoring (ANR MAPE, ANR VAMPIRE, FP7 SCAMSTOP)

Network Monitoring


- Design probes, protocols, architecture to monitor network activities
- Detect anomalies and misuse in large scale services infrastructures
- Design efficient countermeasures
- Achievements
 - P2P KAD Monitoring for paedophilia activity tracking [P2P'11, ICC'10]
 - VoIP signalling & Call Records based fraud detection [RAID'08, IM'11]
 - IPv6 automated address assignment attack protection (NDPMon) [COMMAG'10]


DHT-based P2P Monitoring - Challenge

Context

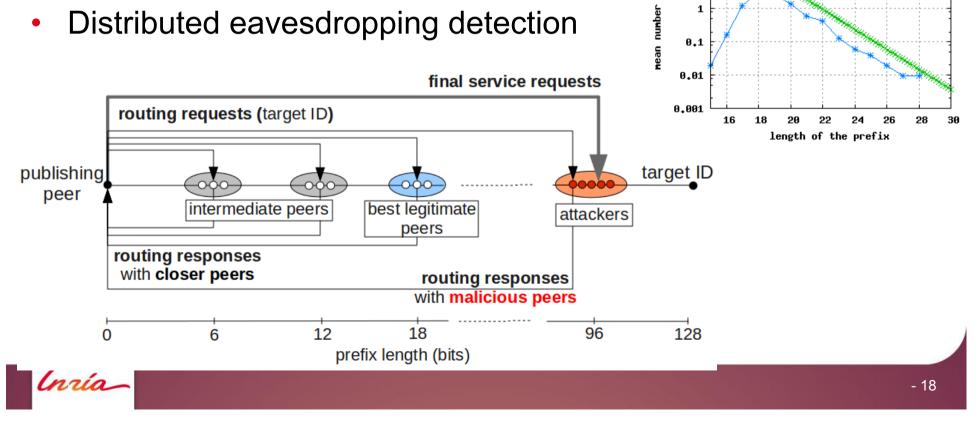
- MAPE ANR Project : Fighting against online paedophila activity
- Multi-network usage evaluation need
- Challenge
 - Efficient monitoring in KAD
 - Low cost monitoring prevention

DHT-based P2P Monitoring -Approach

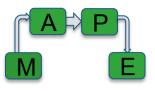
theoretical

neasured

1000

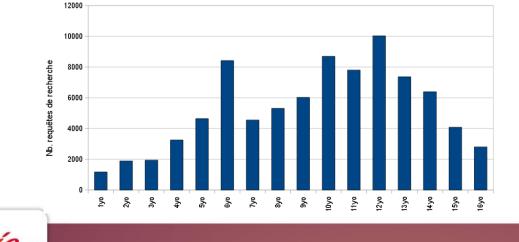

100

10


1

of peers

- Exploit the power of the KAD routing algorithm
- Evaluate the optimal number of probes
- Measure in the real world
- Distributed eavesdropping detection •



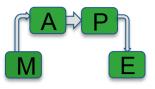
P2P KAD Monitoring: Impact

- Efficient large-scale monitoring framework for KAD
 - Validated on online child-pornography activity fighting
 - 8 campaigns of 70 keywords activity monitoring (1 week to 1 month each)
- A very powerful new protection mechanism for KAD
 - Implemented and maintained in GTK-Gnutella

5 Future Work (2012-2015)

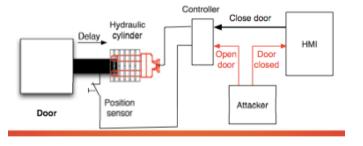
(nría_

Team Evolution

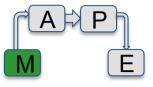

Improve network management and operations in dynamic environments

- New Arrivals
 - Ye-Qiong Song
 - Mac layer design
 - Cross-layer optimizations,
 - QoS/QoA
 - Real-time networks
 - Thomas Silverston
 - Network measurment
 - IPTV
- Retirement
 - André Schaff
- External responsibilities
 - Olivier Festor, EIT ICT Labs

- Funding
 - 3 established funded projects until 2015
- 3 New Ph.D. Students in 2012
- The team is 8 years old



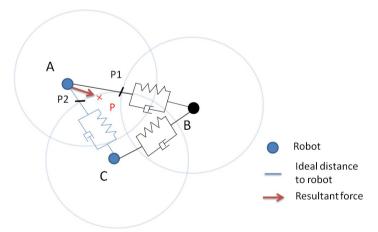
Objectives 2012-2015 Vulnerability Management


- Security automation (safe configuration)
 - Distributed vulnerability assessment
 - Cooperative vulnerability exploitation prevention
- Cyber-Physical Systems Security
 - Process-based fuzzing
 - Automated protection mechanisms generation

Objectives 2012-2015 Monitoring

- Large scale P2P monitoring
 - Hybrid anonymous/open P2P networks monitoring
 - Impact of protection mechanisms on system performance
- Sensor networks monitoring
 - Piggy-backing protocols for management data collection
 - In-network aggregation
- Security monitoring in ICN networks
 - o Design an ICN-compliant Managemement plane
 - Rethinking basic management abstractions

Objectives 2012-2015 Quality of Service & Co-Simulation

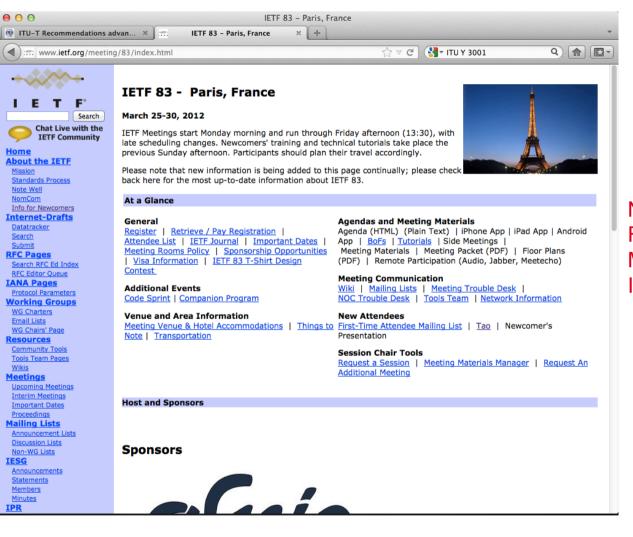


- Opportunistic & geographic routing
- Global scheduling strategies
- QoS-aware middleware
- Co-simulation & testbeds
 - UAVs AeTOURNOS platform

6 Summary

Ínría_

Summary

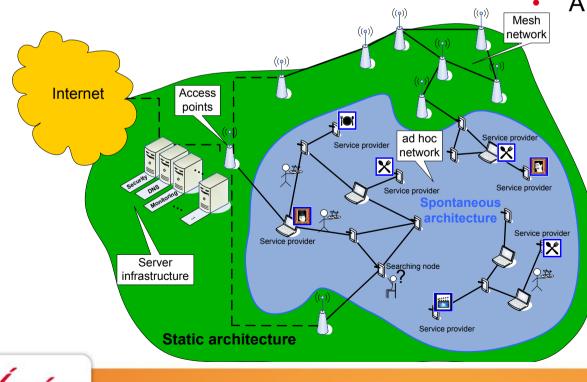

- MADYNES is a very active and visible team in network and service management
- Solid contributions in the reporting period
- Many more contributions to show:
 - Risk management, service discovery, co-simulation, VoIP monitoring, Security automation, ...
 - ... will be presented & demonstrated in the private session!
- Some thematic evolutions in the future work plan
 - WSANs QoS
 - o to complement existing core activities

Thank you !

Networks and Telecommunications Evaluation Seminar – Rungis 03/2012 WWW.inria.fr

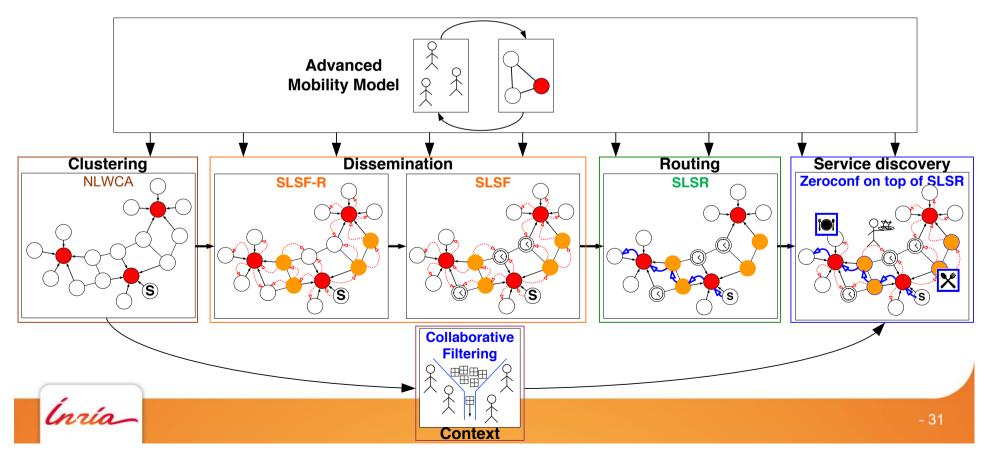
NMRG Flow Monitoring Workshop March 31st, 2012 ICT Labs, Paris

Co-Simulation and Service discovery in Smart Spaces (ANR SARAH)

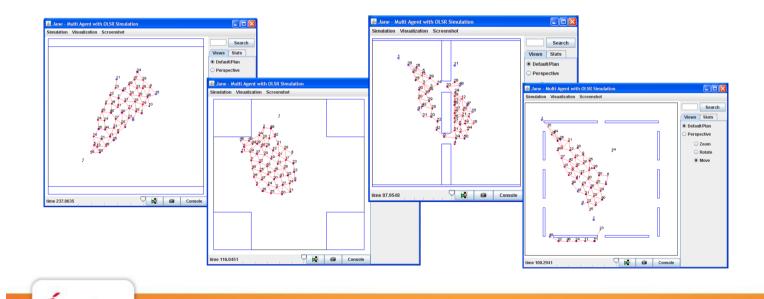

Service discovery & co-simulation in Smart Spaces : Context

Challenges

 Design and validate an efficient service discovery protocol in a Museum environment MANET


Achievements

- New cross-layer service discovery protocol for Mobile Ad hoc networks
 - SLSF + SLSR & Zeroconf
 - A generic co-simulation model
 - Framework
 - Experiementation on multiple simulators coupling


Service discovery & co-simulation in Smart Spaces : Service discovery

- SLSR + SLSF
 - Protocols for routing & flooding
 - Zeroconf + collaborative filtering for service discovery

Service discovery & co-simulation in Smart Spaces : Co-simulation

- Context & behavior-aware simulation models
- Easy to integrate simulators & models

