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Abstract—We consider an uplink power control problem where
each mobile wishes to maximize its throughput (which depends on
the transmission powers of all mobiles) but has a constraint on the
average power consumption. A finite number of power levels are
available to each mobile. The decision of a mobile to select a par-
ticular power level may depend on its channel state. We consider
two frameworks concerning the state information of the channels
of other mobiles: i) the case of full state information and ii) the
case of local state information. In each of the two frameworks, we
consider both cooperative as well as non-cooperative power con-
trol. We manage to characterize the structure of equilibria policies
and, more generally, of best-response policies in the non-coopera-
tive case. We present an algorithm to compute equilibria policies
in the case of two non-cooperative players. Finally, we study the
case where a malicious mobile, which also has average power con-
straints, tries to jam the communication of another mobile. Our
results are illustrated and validated through various numerical ex-
amples.

Index Terms—Cooperative/non-cooperative optimization,
power control, wireless networks.

I. INTRODUCTION

T HE multiple access nature of wireless networks represents
a fundamentally different resource allocation problem as

compared to wired networks which provide a dedicated channel
for each user. The shared nature of the wireless channel implies
that the rate obtained by a user depends not only on its own
transmit power level but also on the transmit power levels of
the other users. A user who transmits at a relatively high power
level, though may increase its own rate, will interfere with the
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transmissions of the other users and prompt them to increase
their own transmission power. Such a situation is undesirable in
wireless networks where mobile devices are usually equipped
with limited-lifetime batteries which require judicious utiliza-
tion. It is, therefore, in the interests of the users to control their
transmit powers levels so as to increase the information transfer
rate and the lifetime of the devices. Power control also has the
added benefit of allowing the spatial reuse of channels, i.e., the
same channel can be concurrently used by mobiles at locations
where interference is sufficiently low.

In this paper, we consider dynamic uplink power control in
cellular networks: mobiles choose their transmission power
level from a discrete set in a dynamic way, i.e., the transmission
power level is chosen based on the available channel state
information. By controlling the power one can improve con-
nectivity and coverage, spend less battery energy of terminals,
increase device lifetime, and maximize the throughput. In terms
of decision making, we consider two cases:

• Decentralized case: Each mobile chooses its own power
level based on the condition of its own radio channel to the
base station.

• Centralized case: The transmission power levels for all
the mobiles are chosen by the base station that has full
information on all channel states.

We assume that there are upper bound constraints on the average
power that a mobile can use. Thus in very bad channel condi-
tions, one can expect a mobile to avoid transmission and save
its power for more favorable channel conditions.

Applications that can mostly benefit from our proposed de-
centralized power control are ad-hoc and sensor networks with
no predefined base stations. In such networks, mobiles may have
to act temporarily as base stations [1]–[3], which can involve
a heavy burden in terms of energy. The limited processing ca-
pacity and battery lifetime of devices precludes the use of cen-
tralized schemes, thereby making decentralized approaches for
power control more appropriate in such networks. The wireless
sensor networks greatly benefit from the decentralized power
control since the wireless sensor networks have very limited en-
ergy budget. Examples of the application of the decentralized
power control schemes to wireless sensor networks are given in
[4]–[6]. In [4]–[6] one can also find diverse use cases for wire-
less sensor networks such as body sensor networks and habitat
monitoring. Furthermore, we note that the design of decentral-
ized power control has for long interested the networking com-
munity even before ad-hoc and sensors networks have been in-
troduced (see [7], [8] and references therein).

We obtain results for both the cooperative setting in which
the mobiles’ objective is to maximize the global throughput, as
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well as the non-cooperative case in which the objective of each
mobile is to maximize its own transmission rate.

We identify the structure of equilibria policies for the decen-
tralized non-cooperative case. We show that the following struc-
ture holds for any mobile , given any set of policies chosen
by mobiles other than . Any best response policy (i.e., an op-
timal policy for player for a given policy of other mobiles)
has the following properties:

i) It needs randomization between at most two adjacent
power levels;

ii) the optimal power levels are non-decreasing functions of
the channel state;

iii) if two power levels are both optimal at a given channel
state then they cannot be jointly optimal for another
channel state.

We present an algorithm to compute equilibria policies in the
case of two non-cooperative players.

For the cooperative centralized problem with two mobiles,
we obtain insight on the structure of optimal policies through
a numerical study. An interesting property that we obtain is the
fact that the optimal policy has a TDMA structure: in each com-
bined state there is only one mobile that will transmit
information. This will of course eliminate the interference. We
also show that unlike the decentralized case, the average power
level constraints may hold with strict inequality when using the
optimal policy.

We finally study the case where a malicious mobile, which
also has average power constraints, tries to jam the communica-
tions of another mobile. Our results are illustrated and validated
through various numerical examples.

A. Related Work

There has been an intensive research effort on non-cooper-
ative power control in cellular networks [7], [9]–[16]. In all
these work, however, the set of available transmission powers
has been assumed to be a whole interval or the whole set of non-
negative real numbers. In this paper we consider the case of a
discrete set of available power levels, which is in line with stan-
dardized cellular technologies. Very little work on power con-
trol has been done on discrete power control. Some examples
are [17] who considered the problem of minimizing the sum of
powers subject to constraints on the signal to noise ratio, [18]
who studied joint power and rate control, and [11] (which we
describe in more detail below).

The mathematical formulation of the power control problem
shows much similarity with a well studied problem of assigning
transmission powers to parallel channels between a mobile and
a base station with a constraint on the sum of assigned powers,
see e.g. [19, p. 161]. This problem is often known as the “water
filling” (which is in fact the structure of the optimal policy). The
difference between the models is that in our case we split powers
over time, whereas in the water filling problem the powers are
split over space. Our results are therefore quite relevant to the
water filling problem as well. Some work on water filling games
can be found in [12] where not only mobiles take decisions,
but also the base station does, with the goal of maximizing
a weighted sum of the individual rates. In [20], the non-co-
operative water filling game is studied in the context of the

interference channel; two mobiles and two corresponding base
stations.

Game theoretic formulations for non cooperative power con-
trol with finite actions (power levels) and states (channel attenu-
ations) have been proposed in [11]. An equilibrium is obtained
there for the case of a large number of players. The cost to be
minimized by a player is the quadratic difference between the
desired and the actual SINR (Signal to Interference plus Noise
Ratio) of that player. In contrast, in the model we introduce in
this paper, the choice of the transmission power is done in the
purpose of maximizing the mobile’s own throughput subject to
a limit on the average power. Our setting is different also in the
following. In our model, in a given channel state, each mobile
can either choose a fixed power level or can make randomized
decisions, i.e., it can make the choice of power levels in a state
based on some (state dependent) randomization.

B. Organization of the Paper

The structure of the paper is as follows. We first present the
model (Section II) as well as the mathematical formulation of
both the case of centralized information (Section III) as well
as the one of decentralized information (Section IV). In Sec-
tion V we identify the structure of best-response policies and
thus of equilibria for the decentralized case. Power control in the
presence of a malicious mobile is studied in Section VI. In Sec-
tion VII we present numerical examples. The examples illustrate
the theoretical results that we had obtained and provide some ad-
ditional insights. After a concluding section we present a com-
putation methodology for computing equilibria in the game of
two players.

II. THE MODEL

A. Preliminaries

Consider a set of mobiles and a single base station. As
in several standard wireless networks (e.g., UMTS and IEEE
802.11), we assume that time is slotted. In each time slot , each
mobile transmits data with power level chosen from a
finite set containing power levels. De-
note by the actual power corresponding to the th power
level where . Denote .

The channel state model: We assume that the channel be-
tween mobile and the base station can be modeled as an er-
godic finite Markov chain taking values in a set

of states with transition probabilities .
The Markov chains , , are assumed to be inde-
pendent. Let be the row vector of steady state probabilities of
Markov chain ; let be its entry corresponding to the
state . It is the unique solution of

We also denote by the probability of state
. Since the Markov chains that describe the

channel states are independent, .
The power received at the base station from mobile is given

by where is the power emitted by mo-
bile and is the attenuation factor, which is a



2330 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009

function of the channel state . We shall denote the global
state space of the system by .

Performance measures: The signal to interference plus
noise ratio at the base station related to mobile when
the power level choices of the mobiles are
and the channel states are is given by

We consider the following instantaneous utility of mobile

(1)

is known as the Shannon capacity and can thus be inter-
preted as the throughput that mobile can achieve at the uplink
when the channel conditions are given by and the power levels
used by all mobiles are .

Notation: In the rest of the paper, we shall use the fol-
lowing notation. We shall denote an element of the set
by . The th component of will be denoted by , i.e.,

, where for . We
define and in a similar manner. Let and denote
the set of channel states and the set of actions, respectively,
corresponding to all the players other than player . For an
element , let denote the th component of .
We define and in a similar way.

B. Policy Types

A mobile’s choice of successive transmission power levels is
made based on the information it has. The latter could be local,
in which case the policy is said to be distributed. We shall also
consider centralized policies in which all decisions are taken at
the base station. We have the following definitions.

• A Centralized policy, , is the probability that the
base station assigns the transmission power levels

to the mobiles if the current channel’s states
are given by the vector . This is equiva-
lent to the situation where all system information is avail-
able to all mobiles, and moreover, all mobiles can coordi-
nate their actions. This situation describes central decision
making by the base station. The class of centralized poli-
cies is denoted by .

• A Decentralized policy, , is the probability that
player chooses the transmission power level if
its channel state is . Thus, only local information
is available to each mobile, and there is no coordination
in the random actions. This situation describes individual
decision making by each mobile without any involvement
of the base station. The class of decentralized policies for
player is denoted by . Define .

Along with policies we shall use also the occupation mea-
sures. For a given and , the global occupation
measure, , will be used in the context of a centralized
policy, , it is defined as

Note that given a global occupation measure, , the corre-
sponding can be obtained by

(2)

(it is chosen arbitrarily if the denominator is zero). For a given
and , the local occupation measure, , is

defined with respect to a decentralized policy, , and is
given by

For a given local occupation measure, , the corresponding
can be obtained by

(3)

(it is chosen arbitrarily if the denominator is zero). In case of
decentralized decision making, we define as

(4)

for a given .

C. Problem Formulation: Objectives and Constraints

For any given policy,1 , and the corresponding occupation
measure, ,2 we now define the utility function, the con-
straints, and the optimization problem.

The utility functions: We define the utility for player as

(5)

Power constraints: In the centralized case, player is as-
sumed to have the following average power constraint:

(6)

whereas in the decentralized case the corresponding constraint
is

(7)

Note that in the decentralized case the state-action frequen-
cies of a particular mobile are independent of decisions of the
other mobiles [see (4)]. Consequently, in the decentralized case,
the average power constraint of a mobile does not depend on the
decision of the others. However, in the centralized case, the de-
cisions of all the mobiles are interdependent.

1With slight abuse of notation, we shall denote both centralized and decen-
tralized policies by �. In the centralized case, ������ will denote a probability
measure over � for a given�. In the decentralized case, �will denote the vector
� � �� � � � � � � � � �, where � is the decentralized policy for player �, for
� � �� �� � � � � � .

2For the decentralized case, we note that � ����� is given by (4).
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1) Cooperative Optimization: We consider here the problem
of maximizing a common objective subject to individual side
constraints. Namely, we define for any policy

(8)

where are some nonnegative constants. For an arbitrary set of
policies we consider the problem

(9)

2) Non-Cooperative Optimization: Here each mobile is con-
sidered as a selfish individual non-cooperative decision maker,
which we then call “player.” It is interested in maximizing its
own average throughput (5). In the noncooperative it is natural
to consider only decentralized policies .

For a policy we define to be
the set of components of other than the th component. For
a policy we then define the policy as one in
which player uses the element of whereas player
uses .

Definition 1: We say that is a constrained Nash
equilibrium [21] if it satisfies (7) for all players, and if

for any and any such that (7) holds for the policy
.

III. CENTRALIZED COOPERATIVE OPTIMIZATION

When the cooperative optimization is considered over the set
of centralized policies, then the problem is in fact of a single
controller (the base station) which has all the information. Let

, , denote
the common instantaneous utility when power level is chosen
in channel state . The next Theorem states the existence of an
optimal strategy if the constraint set is not empty. The optimal
strategy can be obtained by means of provided Linear Program.

Theorem 1: Consider the cooperative optimization problem
over the set of centralized policies. Assume that

there exists a policy under which the power constraints (7)
hold for all the mobiles. Then,

(i) there exists an optimal centralized policy . The
policy can be obtained from the solution of the fol-
lowing Linear Program by formula (2):

(10)

(11)

(ii) An optimal policy can be chosen with no more than
randomizations.

Proof: The problem is a special case of constrained
MDPs (Markov Decision Processes). Indeed, there is only one
decision maker, the base station, which assigns power levels

to mobiles. It has all the information about the state of
the system , which is combined state of all channels.
Since the Markov chains are independent, the steady
state probabilities of Markov chain corresponding to a global
system state are equal to . Thus, we have
a constrained MDP with states , actions , steady
state probabilities , and constraints (7)–(14). Now we can
apply the classical results on constrained Markov Decision
Processes: statements in i) follow from Theorem 4.3 of [22].
Statement ii) follows from the fact, that the Linear Program
(10), (11) has constraints. At the same time
the number of independent constraints is upper-bounded by

, because the first equality constraints of
(11) are dependent. The latter means that the optimal solution
can be chosen with no more than non-zero
elements. For each particular there should be at least one
nonzero , if . Consequently we are left only
with other possible nonzero , which corresponds to

randomizations of the strategy. If for some we
can simply reduce the state space.

Remark 1: We note that there could be several optimal so-
lutions to the Linear Program (10). Some of these solutions
could correspond to policies with randomization at more than

points. However, one can always select an optimal solution
of (10) which corresponds to a policy with no more than ran-
domizations. See also the discussion and numerical example in
Section VII-B.

Note that in the centralized framework it does not make sense
to speak about a non-cooperative game, since there is a single
decision maker.

IV. DECENTRALIZED INFORMATION

A. Non-Cooperative Equilibrium

Here we consider the case when the players optimize their
own objective (5) subject to the constraints (7) given the local
information only. For this case we show the existence of the
constrained Nash equilibrium.

Theorem 2: Under the assumptions on the objective functions
, constraints (7), and the set of decentralized policies

made above, there exists a policy satisfying Defini-
tion 1.

Proof: The set of policies for a player can be identified
by a set of probability measures over the . The subset of
policies of mobile that furthermore meet the power constraints
can thus be identified by the set , , ,
satisfying
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This is a closed convex set for each player. Moreover, for each
mobile , the utility is concave in and continuous in

. We conclude from Theorem 1 of [21] that a con-
strained Nash equilibrium exists.

B. Cooperative Case

Here we discuss the situation where, even though there is a
common goal that is optimized, the power level choices are not
done by the base station but by the mobiles themselves who
have only their local information available to take decisions.
Coordination is thus not possible.

Considering the decentralized framework, we make the fol-
lowing observation concerning the relation between the cooper-
ative and the non-cooperative cases.

Theorem 3: Any policy that maximizes the common ob-
jective while satisfying the constraints is necessarily a
constrained Nash equilibrium in the game where each mobile
maximizes the common objective .

Proof: Let be a globally-optimal policy among the de-
centralized policies. Assume that it is not an equilibrium. Then
there is some mobile, say , that can deviate from to some
such that (7) holds and such that its utility, which coincides with
the other mobile’s utility, satisfies .
Moreover, for all other players as well, the constraint (7)
still holds since it does not depend on mobile ’s policy. But this
implies that is not a globally optimal policy which is a con-
tradiction. So we conclude that is indeed a constrained Nash
equilibrium.

Now we show in Theorem 4 that there exists an optimal de-
centralized policy.

Theorem 4: Let all the players have the common objective
function defined by (8). Under the assumptions on con-
straints (7) and the set of decentralized policies made above,
there exists a solution to the problem
(9).

Proof: Consider the non-cooperative setting but with the
common objective to all mobiles. There exists at least
one such equilibrium due to Theorem 2. If there is a domi-
nating constrained equilibrium (which is the case when there
are finitely many constrained equilibria) then it is a globally
optimal policy due to Theorem 3. Assume next that there is
a set of infinitely many constrained equilibria. Let

and let be a sequence of constrained
equilibria such that . Then it follows
(from an adaptation of [23] and [24]) that there exists a con-
strained equilibrium such that . It is thus a
dominating equilibrium and hence a globally optimal policy.

V. STRUCTURE OF NON-COOPERATIVE EQUILIBRIUM

In this section, we identify the structure of equilibria policies
for the decentralized non-cooperative case. To that end we first
study the structure of best response policies of any given user
when the policies of the other users are fixed. Using the results
on the structure of the best response we then establish the struc-
ture of the equilibrium policies.

We fix throughout the policy of players other than player
, where

is the probability that each mobile chooses when its
local state is . The product form here is due to the decentral-
ized nature of the problem and to the fact that there is no coor-
dination between the mobiles is possible.

Before we state our main result, we present two definitions
and state the assumption necessary to derive our main result.

Definition 2 (Increasing Differences): Let . A
function has (strict) increasing differences
in if for every ,

(12)

This property implies that the maximizer with respect to a vari-
able is increasing in the other variables. There has been much
research on supermodular functions due to the above appealing
property (see [25] and references therein).

Definition 3 (Single-Randomization Allocation): A single-
randomization allocation is an allocation in which at most a
single power level is used for each state, except for some state
, for which two power levels are used, i.e., , for

some adjacent power levels and .
Assumption 1: The rate function for the th mobile,

, has
i) a concave and strictly increasing interpolation in ;

ii) a strict increasing differences in .
Proposition 1: The rate function defined in (1) obeys As-

sumption 1.
Proof: We first assume that the function (resp., ) has

an increasing interpolation in (resp., in ). These assump-
tions non-restrictive as we can enumerate the states so that the
quality of the associated channel state (resp., power level) in-
creases with the index of the state.

Assumption 1.(i) is met by the concavity of the logarithm
function and the fact that has an increasing interpolation in .

Now consider the continuous and twice differentiable func-
tion . It is well known (e.g., from
[25]) that a function in has strictly increasing
differences if , where are two
components of the vector . We have

Hence has (strict) increasing differences. Since the function
in (1) is a restriction of to the points , this func-
tions has increasing differences as well and thus obeys Assump-
tion 1.(ii).

Hence, the class of functions defined in Assumption 1 con-
tains the specific rate function considered in this paper. We now
establish the following main result on the structure of any best
response policy:

Theorem 5: Consider the decentralized non-cooperative case.
Under Assumption 1, the following holds:

i) For a given channel state, the best response policy consists
of either the choice of a single action, or in a randomized
choice between at most two adjacent power levels.

ii) There exists an optimal allocation with a single random-
ization. An optimal allocation with more than one ran-
domization is not generic.
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iii) The optimal power levels are non-decreasing functions of
the channel state.

iv) If two power levels are jointly optimal for a given
channel state then they cannot be jointly optimal for
another channel state.

The proof of this result follows the following steps. We first
formulate the problem of obtaining a best response as a linear
program. Using Lagrange relaxation we are able to decouple the
problem to several simpler ones: in each one of the latter, the
channel state is fixed. Then we prove the statement i) and ii) by
establishing the concavity of the best response value function
corresponding to a fixed channel state. Statements iii) and iv)
will follow from the supermodularity of the value function.

First we formulate the problem of obtaining a best response
as a linear program. With as defined in (1), denote

For the fixed , player is faced with the problem

(13)

(14)

Consider the following relaxed problem parameterized by
some finite real :

(15)

and

Lemma 1: The best response policy of player can be ob-
tained by solving the relaxed problem corresponding to each
channel state .

Proof: Problem (13) faced by player can be viewed as
a special degenerate case of constrained Markov decision pro-
cesses (it is degenerate since the transition probabilities of the
radio channel of mobile are not influenced by the actions. The
latter only have an impact on the immediate payoff and on

). We know from [22] that a policy is optimal for (13) only
if it is optimal for the relaxed problem (15) for some finite . By
characterizing the structure of the policies that are optimal for
(15) we shall obtain the structure of optimal policies for (13). In
the sequel, we shall omit the constant from the objective
function in (15) since it has no influence on the structure of the
optimal policies.

Observation: We now make the following key observation
on (15). The relaxed problem can be solved separately for each

channel state . A policy is
optimal for (15) if and only if for each fixed ,
maximizes

(16)
Due to linearity, for each there is a non-randomized
decision such that

where .
We now prove each of the four statements in Theorem 5.

Proof of Theorem 5.(i): From Assumption 1, for a fixed
, has a concave interpolation in . Thus, has a

concave interpolation in for a fixed . This means that the
maximum is achieved at either

1) a single action which has a non-zero probability to be used
by any optimal policy;

2) two adjacent actions, say and for which
.

The above structure holds not only for the relaxed problem
(15) but also for the original problem (13). This follows since
any optimal policy for (13) is necessarily optimal for the relaxed
problem (15) for some , and since we just saw that any optimal
policy for the relaxed problem has this structure. The statement
i) is proved.

Proof of Theorem 5.(ii): We prove this by contradiction.
Assume that is an optimal allocation that uses randomiza-
tion for more than a single state. Taking as a starting point,
we next construct a single-randomization allocation which is no
worse than . Moreover, we show that it is strictly better than

w.p. 1. Let and be two states for which two power levels
are used under [more than two power levels would not be
used by Theorem 5.(i)]. Denote by and the power
levels used for state and by and

the power levels used for state .
For each state in which two power levels are used define an index

We construct a no-worse allocation as follows. If we
augment (thus reduce and reduce (thus
augment ). More precisely, assume that . Con-
sider the modified allocation

for some small . Note that the modified allocation raises
the power investment at state by while reducing the power in-
vestment at state by the same quantity, thus preserving the total
power constraint. The rate at state is consequently improved by

while the rate at state is reduced by . The overall rate is
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obviously higher. We carry on with this procedure until reaching
a probability of zero in one of the pairs (state,power) above. If

we construct a better allocation in an analogous way.
If the overall rate remains constant by the above proce-
dure. Carrying the procedure for all states in which two power
are used would eventually leave us with a single-randomization
allocation, proving part i). As to the second statement of part ii),
we note that essentially with zero probability assuming
that takes real values according to some continuous density
function. Hence, the rate is strictly improved by transforming
the policy to a single-randomization one.

Proof of Theorem 5.(iii) and 5.(iv): We prove these state-
ment by contradiction. Assume there exists two channel states
and with and two power levels
such that and . To prove our claim,
we next construct a modified allocation with the same energy in-
vestment which obtains a strictly higher rate. For small, let

, ,
, and

, be the modified policy, where all other probabilities
are left unchanged. Note that the modified policy uses the same
total energy. The change in throughput (divided by for the sake
of exposition) is given by

(17)

The expression (17) is strictly positive by Assumption 1; hence,
the allocation can be strictly improved which is a contradiction
to its optimality.

Now, using Theorem 5 we can establish the structure of the
constrained Nash equilibria.

Corollary 1: Consider the decentralized non-cooperative
case. For each mobile , assume that , , and satisfy
Assumption 1. Then there exists at least one equilibrium.
Moreover, at any equilibrium the following hold for each
mobile :

i) In each channel state , consists of either a
choice of a single power level, or in a randomized choice
between at most two adjacent power levels.

ii) There exists a single-randomization allocation that is op-
timal. Moreover, any optimal policy is a single random-
ization policy w.p. 1.

iii) The power levels used in are non-decreasing functions
of the channel state.

iv) If two power levels are used at a state by mobile with
positive probability (i.e. and
for ) then under , not more than one of them is
used with positive probability at any other channel state.

Proof: The structure of best response policies character-
izes in particular the structure of the constrained Nash equi-
libria policies since at equilibrium, each mobile uses a best re-
sponse policy. Therefore, the structure we derived for the best
response policies holds for any Nash equilibrium for any of
the mobiles.

VI. POWER CONTROL IN THE PRESENCE

OF A MALICIOUS MOBILE

In recent years, there has been a growing interest in identi-
fying and studying the behavior of potential intruders to net-

works or of malicious users, and in studying how to best detect
these or to best protect the network from their actions (see, e.g.,
[26]–[28] and references therein).

We consider in this section a scenario where a malicious
player attempts to jam the communications of a mobile to the
base station. We consider the distributed case and restrict for
simplicity to two mobiles and a base station.

The first mobile (player 1) seeks to maximize the rate of in-
formation that it transmits to the base station. In other words it
wishes to defined in (5) where is given in
(1).

The second mobile (player 2) has an antagonistic objective:
to prevent or to jam the transmissions of the first mobile, with
the objective of minimizing the throughput of information
that mobile 1 transmits to the base station. It thus seeks to

. We assume that the interference of the
second mobile is presented as a Gaussian white noise.

Except for the objective of the jamming mobile, the model,
including the average power constraints, defined in Section II
holds. In particular, we conclude that Theorem 5 applies to
player 1 at equilibrium.

We now specify the objective of the players and some proper-
ties of the equilibrium. Denote the set of policies for player
, (where takes the values 1 and 2) that satisfy player ’s power

constraints, i.e., if it satisfies . Player 1
seeks to obtain an optimal policy, i.e. a policy such
that for any other

We call this the jamming problem. It consists of identifying a
policy for player 1 that guarantees the largest throughput under
the worst possible strategy of player 2. In fact, we shall be able
not only to identify the optimal policy for player 1 but also the
“optimal” policy for player 2 (which is the worst for player 1).

A policy is said to be a saddle point if

and and are called saddle point policies or optimal poli-
cies.

Unlike all the decentralized problems we considered previ-
ously, deriving both as well as is possible using a linear
program. The computation is not included here, but it can be
found in [29]. Below we derive the properties of the optimal
policies.

Theorem 6:
i) There exists a saddle point policy in the above game.

ii) Under Assumption 1, any optimal policy for player 1 (the
transmitter) has the structure identified in Theorem 5.

For the proof of i) we refer to [29]. Part ii) is a direct result
of Theorem 5.

For player 1, from Theorem 6 we can infer that the relaxed
objective function has a structure similar to that of (15).

We now identify a structural property of the optimal policy of
player 2, i.e., of the jammer. Let have a convex interpolation
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in , and have an increasing interpolation in . Therefore, for
a given , the relaxed objective function would have a convex
interpolation in . This means that

i) there is only one action, say , which has a non-zero prob-
ability to be used by any optimal policy;

ii) except for two adjacent actions, say and , all other
actions are not used by any policy which is optimal.

Using arguments similar to those in Theorem 5 proof, we can
conclude that the above structure holds not only for the relaxed
problem but also for the original problem.

We finally note that the monotonicity property enjoyed by the
saddle point policy of mobile 1, need not hold for mobile 2. This
will be illustrated in Section VII-C (see Fig. 6).

VII. NUMERICAL EXAMPLES

In this section we provide examples of power control problem
for two mobiles that interact with the same base station. The de-
centralized policies are provided both for the cooperative and
non-cooperative cases. Moreover, the single controller problem
for centralized cooperative framework is also solved. All three
problems are considered in the same settings, so one has an op-
portunity to compare the obtained strategies and the objective
value functions for different approaches.

Let us discuss the numerical procedures for all the cases (de-
centralized cooperative/noncooperative, centralized cooperative
and jamming).

For the decentralized cooperative case we need to solve the
problem of maximization of the polynomial objective subject to
linear constraints. There are special methods to solve this kind of
problems [30], [31], and in two player case this problem reduces
to a well known quadratic program.

For the decentralized non-cooperative equilibrium computa-
tion we propose to use the iterative best response policy com-
putation. We fix the policy of all mobiles except one given and
compute its optimal response. Then we iterate according to a
round robin order. Whenever this method converges to some

, then is indeed an equilibrium strategy since is an
equilibrium if and only if for each mobile , the policy is a
best response against the other policies . Unfortunately,
we do not have any proof of the convergence of this method.
Nevertheless, for the case of two mobiles this algorithm worked
extremely well in different parameter settings (convergence in
about three iterations). Furthermore, for the case of two mobiles
we propose the adaptation of Lemke’s method for Linear Com-
plementarity Problem [32]. In Appendix A we show that this
algorithm converges for the considered class of problems.

The centralized cooperative optimization is equivalent to a
classical MDP formulation which leads to a Linear Program-
ming formulation. The LP can be solved for example by effi-
cient interior point method in polynomial time.

The jamming case also leads to Linear Programming formu-
lations, for details see [29].

We assume, that the radio channel between mobile ,2
and the base station is characterized by a Markov chain with
states , , and a uniform vector
of steady state probabilities. One of the transition probability
matrices which has a uniform steady state probability vector is
given by .

The power attenuation for each state of the Markov chain
is defined by the following:

Let mobile ’s action set be given by .
The actual power corresponding to the th power level, where

, is

where the level of 0 dB corresponds to some base value of power
. We assume that the background noise power at the base

station, , is equal to 0 dB. Since (1) depends only on the
ratio between the power of signal received from a certain mobile
and the total power received from other mobiles and the thermal
noise power at the receiver, we do not specify the exact value of
the base power .

We note that, with the above definitions, , and satisfy
the properties in Assumption 1.

The power consumption constraints for players are the fol-
lowing:

where is defined by (14). Note, that both right and left
hand sides of these constraints have the multiplier , which
can be cancelled.

The proposed model is quite simple, we chose it so as to avoid
technical difficulties related to Markov chains with infinite state
space. Thus we assume that a finite Markov chain can approx-
imate well randomness due to fading, shadowing, mobility, as
well as time correlation phenomena which are often ignored.
Nevertheless, the main goal of the example is to validate the
structure that we obtain rather than to propose a reliable model
that could include mobility, handovers, shadowing, fading, in-
terference from other cells etc. Further research including these
features is planned.

A. Decentralized Policies

First we consider the decentralized problems that arise in co-
operative and non-cooperative case. Both problems are formu-
lated in terms of occupation measures . In order to
compute the strategies one can use (3).

1) Cooperative Optimization: Let and
. Here we consider the following cost function:

(18)

where are defined by (1).
Consider the following bilinear problem:

(19)

(20)



2336 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009

Fig. 1. Supports of the optimal policies in cooperative case.

and

(21)

Here is the transition matrix of the Markov chain, which de-
scribes the radio channel between the mobile and the base sta-
tion, and is equal to one if and is zero otherwise.

The problem (19) could be solved using the quadratic pro-
gramming technique.

In Fig. 1, the supports of the optimal policies for both players
are shown as a function of the channel state.

As one can see, the mobile 1 has a pure strategy at all the
points but one, where . The mobile 2 also has only
one randomization point . The exact values of the
policies at those points are as follows:

for mobile 1, and

for mobile 2.
The value of the objective function in this problem is

.
2) Non-Cooperative Equilibrium: Now, in the same setting

as in the cooperative case, we consider an example of non-co-
operative optimization. Each mobile needs to maximize its own
objective function

Fig. 2. Supports of the optimal policies in non-cooperative case.

subject to the constraints (25)–(28) (in the Appendix).
By means of the linear complementarity problem (33) one

can obtain the optimal strategies depicted on Fig. 2. The exact
values of the policies at the randomization points are as follows:

We note that the structure obtained in Theorem 5 holds for both
the players.

The values of the objective functions in this problem are
, . As it was expected, the

total throughput value is
smaller than in cooperative case.

B. Centralized Optimization

Now let us consider the single controller problem, that arises
in the case of centralized optimization. As in the decentral-
ized framework, we operate here in terms of occupation mea-
sures. Thus, the problem (10) for the case of two players can be
rewritten as follows:

(22)

where is defined by (18). The maximization is per-
formed subject to the following constraints:

(23)
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Fig. 3. Sets � and � .

Fig. 4. Supports of the optimal policies in cooperative case.

Once the occupation measures are obtained, the strategies can
be computed by means of (2).

Define the following sets:
• : pairs : such that and

for some ;
• : pairs : such that and

for some .
Note, that the set is the set of states in which th player
should transmit with nonzero probability according to the op-
timal strategy.

In Fig. 3 these sets are provided for the centralized optimiza-
tion problem (22). The set is depicted by circles, and the set

—by stars. One can see, that the sets have no mutual points. It
means, that the mobiles never transmit at the same time. We note
that the time-sharing property of the optimal policy was also ob-
served in [33] in the context of continuous available power levels
in wireless sensor networks.

In Fig. 4 one can see the supports of the optimal strategies.
A circle on the place means that the first mo-

bile should transmit with the power level with nonzero
probability in all states .

A star on the place means that the second
mobile should transmit with the power level with
nonzero probability in all states .

If there are two or more power levels for some par-
ticular state , then the player should randomize. In other
case (single power level for the state ), the player
should always transmit with power level .

One can see that for both players there are states
of randomization. We provide here the strategies

for these states

As one can see, the number of randomizations in the obtained
policy exceeds the number of constraints . Nevertheless,
due to Theorem 1 the optimal policy can be chosen with no more
then randomization points. It is easy to check, that the policy
with the same sets and (Fig. 3), supports depicted on
Fig. 5, and one randomization point (see the following table)
delivers the same value to the cost function:

Note, that the centralized power management provides better
throughput in comparison with other considered controls, the
value of the cost function is .

Another interesting point that we want to discuss is the attain-
ability of the power constraints.

Consider the problem (22) without power constraints. The
optimal policies for this problem are as follows:

• Player 1 should transmit at the top power level if
;

• Player 2 should transmit at the top power level if
.

The value of the objective function for this policy is
. The experiments show, that at the optimal point for

problem with constraints (23), where the bounds are both
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Fig. 5. Supports of the optimal policies in cooperative case (one randomization
point).

Fig. 6. Supports of the optimal policies in case of jamming.

greater then 7 dB, the power constraints are not attained, and
the optimal strategy and the value of the objective function are
the same as in unconstrained case.

C. Jamming

The average power bounds are the same as in all previous
examples: for the transmitter , and for the jammer

.
The supports of the optimal strategies in this problem are de-

picted in Fig. 6. We note that the structure obtained in Theorem 5
holds for player 1, whereas the structure obtained in Section VI
holds for player 2. Both players have optimal strategies that are
randomized only at one point

The value of the objective function is
which is less then the same value for the decentralized non-co-
operative case.

VIII. CONCLUSION AND FURTHER WORK

We have studied power control in both cooperative and non-
cooperative setting. Both centralized and decentralized informa-
tion patterns have been considered. We have derived the struc-
ture of optimal decentralized policies of selfish mobiles having
discrete power levels. We further studied the structure of power
control policies when a malicious mobile tries to jam the com-
munication of another mobile. We have illustrated these results
via several numerical examples, which also allowed us to get
insight into the structure in the cooperative framework.

The modeling and results open many exciting research prob-
lems. Our setting, which could be viewed as a temporal sched-
uling problem, is quite similar to the “space scheduling” (i.e.,
the water-filling) problems discussed in the introduction, for
which the context of discrete power levels along with the nonco-
operative setting have not yet been explored. It is interesting not
only to study the water-filling problem in the discrete noncoop-
erative context but also to study the combined space and tem-
poral scheduling problem, where we can split the transmission
power both in time and in space (different parallel channels).

From both a game theoretic point of view as well as from the
wireless engineering point of view, it is interesting to study pos-
sibilities for coordination between mobiles in the decentralized
case (in both cooperative as well as non-cooperative contexts).
This can be done using the concepts from correlated equilibria
[34]–[37], which is known to allow for better performance even
in the selfish noncooperative cases. We note however, that ex-
isting literature on correlated equilibria do not include side con-
straints, which makes the investigation novel also in terms of
fundamentals of game theory.

APPENDIX

LINEAR COMPLEMENTARITY APPROACH

FOR THE DECENTRALIZED CASE

In this section we show how the non-cooperative equilib-
rium can be obtained in the case of two players by means
of linear complementarity problem (LCP). Consider the fol-
lowing problem, where each player wants to maximize his own
payoff :

(24)

where ,2 and

(25)

(26)

(27)

(28)

Here : is the occupation measure for player
,2.
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First, assume, that at the equilibrium point the power con-
sumption constraints (28) are active:

(29)

This assumption is not restrictive, because if one or both of these
constraints are not active, they can be omitted.

Indeed, let be the policy for player that transmits at all
states with maximum power. Then the following statements are
easily seen to be equivalent (since the constraints of a player do
not depend of the strategies of the other players):

1) at equilibrium, the power constraint of player is met with
strict inequality;

2) when using , the power constraint of player is met
with strict inequality (independently of the policy of other
players).

Any of the statements imply that at equilibrium, is the equi-
librium policy of user . So we can first check for which player
, the constraints are violated when using policy . For these

players, the constraints can be replaced with equality constraints
and for the rest, the power constraints can be omitted.

Now let be the vector, containing all the ,
, , and —the same vector for .

Indeed, the problem (24) with constraints (25)–(27) and (29)
can be represented in the form of the bimatrix game with linear
constraints

(30)

s.t.

(31)

and

(32)

Following [38] we introduce the linear complementarity
problem whose solution characterizes the equilibrium point of
(30)–(32):

(33)

where

It is also shown in [38], that under the conditions
and Lemke’s algorithm [39] computes a solution of the
LCP (33).

It should be noted, that in order to satisfy the conditions
, we can always replace cost matrices and with

and , where is a matrix of unities, and is
the maximal positive entry of and .

Once the solution of LCP (33) is found, the equilib-
rium point of the bimatrix game (30) could be computed
using the following formulas:

(34)

where and are vectors of appropriate dimension, whose
components are all ones.
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