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Evolutionary Games in Wireless Networks
Hamidou Tembine, Eitan Altman, Rachid El-Azouzi, and Yezekael Hayel

Abstract—We consider a noncooperative interaction among a
large population of mobiles that interfere with each other through
many local interactions. The first objective of this paper is to
extend the evolutionary game framework to allow an arbitrary
number of mobiles that are involved in a local interaction. We
allow for interactions between mobiles that are not necessarily
reciprocal. We study 1) multiple-access control in a slotted Aloha-
based wireless network and 2) power control in wideband code-
division multiple-access wireless networks. We define and
characterize the equilibrium (called evolutionarily stable strategy)
for these games and study the influence of wireless channels and
pricing on the evolution of dynamics and the equilibrium.

Index Terms—Evolutionarily stable strategy (ESS), evolution-
ary game, slotted Aloha, wideband code-division multiple access
(W-CDMA).

I. INTRODUCTION

EVOLUTIONARY game formalism is a central math-
ematical tool developed by biologists for predicting

population dynamics in the context of interactions between
populations through pairwise interactions. This formalism stud-
ies evolutionary stability and evolutionary game dynamics. The
evolutionarily stable strategy (ESS), first defined in [5], is
characterized by robustness against invaders (mutations): 1) if
an ESS is reached, then the proportions of each population do
not change in time, and 2) at ESS, the populations are immune
from being invaded by other small populations. This notion is
stronger than Nash equilibrium in which it is only requested
that a single user would not benefit by a change (mutation)
of its behavior. Although ESS has been defined in the context
of biological systems, it is highly relevant to engineering as
well [13]. In the biological context, replicator dynamics is a
model that is used to explain observed variations in a population
size. In engineering, we can go beyond characterizing and
modeling existing evolution. The evolution of protocols can be
engineered by providing guidelines or regulations for the way
to upgrade existing ones and in determining parameters that are
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related to deployment of new protocols and services. There has
been much work on noncooperative modeling of power control
and multiple-access control using game theory. There are two
advantages in doing so within the framework of evolutionary
games: 1) It provides the stronger concept of equilibria, the
ESS, which allows us to identify robustness against deviations
of more than one mobile, and 2) it allows us to apply the
generic convergence theory of evolutionary game dynamics and
stability results that we will introduce in future sections.

Contributions: In [7]–[9], we have studied evolutionary
games with pairwise local interactions in the context of wire-
less networks. Our first contribution is to extend the evolution-
ary game framework to allow an arbitrary (possibly random)
number of players that are involved in local interactions
(possibly nonreciprocal). We then apply the extended model to
multiple-access control games with more than two interacting
nodes. We study the impact of the node distribution in the game
area on equilibrium stable strategies. We use the notion of ex-
pected utility, as this game is not symmetric. We analyze the im-
pact of the cost components (transmission cost, collision cost,
and regret cost) on the probability of successful transmission
and present some optimization issues. Our third contribution is
to apply evolutionary game models to study the interaction of
numerous mobiles in competition in a wideband code-division
multiple-access (W-CDMA) wireless environment.

Organization of This Paper: Section II provides motivating
examples that illustrate the limitation of current evolutionary
games. Section III studies our general model of population
games with a random number of interacting players at each
local interaction. We study in Sections IV and V the general-
ized multiple-access game and the evolutionary uplink power
control in W-CDMA networks. Section VI presents numerical
examples on the impact of time delays, and Section VII con-
cludes this paper.

II. EXAMPLES: SYMMETRY AND RECIPROCITY

Assume that each individual in a large population occasion-
ally needs to take some action. When doing so, it interacts with
the actions of some K (possibly a random number of) other
individuals. We shall consider throughout this paper symmetric
games in the sense that any individual faces the same type of
game. All players have the same actions available and same
expected utility. We note, however, that the actual realizations
need not be symmetric. In particular, 1) the number of players
with which a given player interacts may vary from one player to
another, and 2) we do not even need the reciprocity property: If
player A interacts with player B, we do not require the converse
to hold. We provide some examples of multiple-access games
to illustrate this nonreciprocity. For example, consider local
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Fig. 1. Nonreciprocal pairwise interactions.

Fig. 2. Nonreciprocal interactions between groups of three players.

Fig. 3. Interactions between a random number of players.

interactions between transmitters; for each transmitter, there
corresponds a receiver. We shall say that transmitter A is subject
to an interaction (interference) from transmitter B if the receiver
of the transmission from A is within the interference range of
transmitter B.

Nonreciprocal Pairwise Interactions: Consider the example
depicted in Fig. 1. It contains four sources (circles) and three
destinations (squares). A transmission of a source i within a
distance r of the receiver R causes interference to a transmis-
sion from a source j �= i to receiver R. We see that source a
and source c cause no interference to any other transmission,
but the transmission from A suffers from the interference from
source B, and the one from C suffers from the transmission
of the topmost source (called D). Sources B and D interfere
with each other at their common destination. Thus, each of the
four sources suffers interference from a single other source;
however, except for nodes B and D, the interference is not
reciprocal.

Nonreciprocal Nonpairwise Interactions: In Fig. 2, there are
four sources and only two destinations. Node A does not cause
any interference to the other nodes but suffers interference
from nodes B and D. Nodes B, C, and D interfere with each
other. This is a situation in which each mobile is involved
in interference from two other mobiles; however, again, the
interference is not reciprocal.

Interactions Between a Random Number of Players: In this
example, the number of interfering nodes is not fixed (Fig. 3).

Node A suffers interference from two nodes, nodes B and D
suffer interference from a single other node, and node C does
not suffer (and does not cause) interference. Note that if D or
B moves from its position, the mobile A can play the role of C
in this analysis, and a new game between B or D and C will be
played.

All examples exhibit asymmetric realizations and non-
reciprocity. We next show how such a situation can still be
considered as symmetric (due to the fact that we consider
distributions of nodes rather than realizations). Assume that
the location of the transmitters follows a Poisson distribution
with parameter λ over the 2-D plane. Consider an arbitrary
user A. Let r be the interference range. Then, the number of
transmitters within the interference range of the receiver of A
has a Poisson distribution with parameter λπr2/2. Since this
holds for any node, the game is considered to be symmetric.
The reason that the distribution is taken into account rather than
the realization is that we shall assume that the actions of players
will be taken before knowing the realization.

III. EXTENDING EVOLUTIONARY GAMES

We extend the evolutionary game framework to allow an
arbitrary (possibly random) number of players that are involved
in a local interaction. First, we present the model and notations.

– There is one population of users. The number of users in
the population is large.

– We assume that there are finitely many pure strategies
or actions. Each member of the population chooses from
the same set of strategies A = {1, 2, . . . , N}.

– Let M := {(x1, . . . , xN )|xj ≥ 0,
∑N

j=1 xj = 1} be the
set of probability distributions over the N pure actions.
M can be interpreted as the set of mixed strategies. It is
also interpreted as the set of distributions of strategies
among the population, where xj represents the pro-
portion of users choosing strategy j. A distribution x
is sometimes called the “state” or the “profile” of the
population.

– The number of users interfering with a given ran-
domly selected user is a random variable K in the set
{0, 1, . . .}. In the bounded case, we will denote by kmax

the maximum number of interacting users simultane-
ously with a user. This value depends on the node density
and the transmission range. When making a choice of a
strategy, a player knows the distribution of K but not its
realization.

– A player does not know how many players would inter-
act with it.

– The payoff function of all players depends on the
player’s own behavior and the behavior of the other
players. The expected payoff of a user playing strategy
j when the state of the population is x is given by
f(j, x) =

∑
k≥0 P(K = k)uk(j, x), where uk(j, x) is

the payoff of a user playing strategy j when the state
of the population is x and given that the number of
users interfering with a given randomly selected user
is k. Although the payoffs are symmetric, the actual
interference or interactions between two players that use
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the same strategy need not be the same, allowing for
nonreciprocal behavior. The reason is that the latter is
a property of the random realization, whereas the actual
payoff already averages over the randomness related to
the interactions, the number of interfering players, the
topology, etc.

– The game is played many times.
Solution Concepts and Refinement: Suppose that, initially,

the population profile is x ∈ M . The average payoff is
f(x, x) :=

∑N
j=1 xjf(j, x). Now, suppose that a small group

of mutants enters the population playing according to a different
profile mut ∈ M . If we call ε ∈ (0, 1) the size of the sub-
population of mutants after normalization, then the population
profile after mutation will be εmut + (1 − ε)x. After mutation,
the average payoff of nonmutants will be given by f(x, εmut +
(1 − ε)x), where f(x, y) :=

∑N
j=1 xjf(j, y). Note that f need

not be linear in the second variable. Analogously, the average
payoff of a mutant is f(mut, εmut + (1 − ε)x).

ESS (or State): A strategy x ∈ M is an ESS if for any
mut �= x, there exists some εmut ∈ (0, 1), which may depend
on mut, such that for all ε ∈ (0, εmut), one has

f (x, εmut + (1 − ε)x) > f (mut, εmut + (1 − ε)x) (1)

which can be rewritten as
∑N

j=1(xj − mutj)f(j, εmut + (1 −
ε)x) > 0. That is, x is an ESS if, after mutation, nonmutants are
more successful than mutants. In other words, mutants cannot
invade the population and will eventually get extinct.

Neutrally Stable Strategy: We say that x is a neutrally stable
strategy if inequality (1) is nonstrict. A population profile x is
an equilibrium if the variational inequality∑

j∈A
(xj − mutj)f(j, x) ≥ 0

holds for all mut ∈ M . Note that an ESS is a neutrally stable
strategy that is a symmetric equilibrium of the one-shot game,
i.e., the strategy is the same for each player, and no player
has an incentive to unilaterally change his/her action. Now, we
consider the following assumption.

Assumption (H): Given the distribution of the integer ran-
dom variable K, the payoff function

x �−→ D(x) = [f(1, x), f(2, x), . . . , f(N,x)]

is continuous on M .
Note that (H) is satisfied for any integer random variable

with finite support. Let projM be the projection into the set M
defined as projM (y) = arg minx∈M ‖y − x‖2, where ‖y‖2 =√

y2
1 + · · · + y2

N is the Euclidean norm of y. Since M is a
nonempty, convex, and compact subset of R

N , the projection
projM (y) is unique (there is a unique minimizer on M of the
function x −→ ‖y − x‖2).

Theorem 1: Under assumption (H), the evolutionary game
with a random number of interacting users has at least one
equilibrium.

Proof: We show that there exists a probability vector
x ∈ M such that the inequality

∑
j∈A(xj − mutj)f(j, x) ≥ 0

holds for all mut ∈ M . Let θ > 0. The problem is equivalent to

the existence of a solution of the variational inequality problem:
find x ∈ M such that ∀ mut

〈x − mut, θD(x)〉 =
∑
j∈A

(xj − mutj)θf(j, x) ≥ 0

where θ is a positive value. The term 〈x − mut, θD(x)〉 can
be rewritten as 〈x − mut, (x + θD(x)) − x〉. Thus, the equi-
librium is a solution of

〈x − mut, (x + θD(x)) − x〉 ≤ 0, ∀mut.

This implies that x = projM (x + θD(x)). It is known that
projM is a 1-Lipschitz function (hence, continuous). Since D
is a continuous function, the composition projM (Id + θD)
is continuous, and M is a nonempty, convex, and compact
subset of R

N . Using the Brouwer fixed-point theorem, the map
projM (Id + θD) has at least one fixed point x∗ in M . x∗ is our
desired equilibrium. �

This result can be extended into the sequential diagonal
transfer continuous function case.

Evolutionary Game Dynamics: Evolutionary game theory
considers a dynamic scenario where players are interacting with
others players and adapting their choices based on the fitness
they receive. A strategy having higher fitness than others tends
to gain ground: This is formulated through rules describing the
dynamics (such as the replicator dynamics or others) of the
sizes of populations (of strategies).

Replicator Dynamics: Replicator dynamics is one of the
most studied dynamics in evolutionary game theory. It has been
introduced by Taylor and Jonker [6]. The replicator dynamics
has been used for describing the evolution of road traffic
congestion in which fitness is determined by the strategies
chosen by all drivers [4]. It has also been studied in the context
of the association problem in wireless communications [11]
and evolutionary network formation and fuzzy coalition in
heterogeneous networks [12]. We introduce the replicator dy-
namics that describes the evolution in the population of various
strategies. In the replicator dynamics, the share of a strategy
j in the population grows at a rate that is proportional to the
difference between the payoff of that strategy and the average
payoff of the population. The replicator dynamic equation is
given by

ẋj(t) = μ xj(t)

[
f (j, x(t)) −

N∑
l=1

xl(t)f (l, x(t))

]
(2)

where μ is some positive constant. The parameter μ can be used
to tune the rate of convergence, and it may be interpreted as
the rate that a player of the population participates in a (local
interaction) game. In biology, it can represent the probability
that an animal finds a resource available.

It is known from [3] and [4] that Lyapunov stability under a
replicator also shows equilibrium behavior, and the solutions of
the replicator have been shown to converge to the set of Nash
equilibria in important classes of games (e.g., potential games,
zero-sum games, supermodular games, and some classes of
stable games). However, in general, the solutions of replicator
dynamics need not converge to the set of equilibria [3].
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Fig. 4. Case a. (Left) (μ1, μ2) = (1, 1). (Right) (μ1, μ2) = (1.9, 2).

Fig. 5. Case b. Same parameters as in case a. (Right) μ3 = 45; existence of a cycle limit.

Other Evolutionary Game Dynamics: There are a large
number of population dynamics other than the replicator dy-
namics that have been used in the context of noncooperative
games. Examples are excess payoff dynamics, fictitious play
dynamics, gradient methods, generalized Smith dynamics, gen-
erating function-based dynamics, projection dynamics, imitate-
the-better dynamics, spatial mean dynamics with diffusion, and
evolutionary game dynamics with migration. Much literature
can be found in the extensive survey on evolutionary game
dynamics in [3] and [4].

Nonconvergent Behaviors Under Mean Dynamics: It is
known that a specific payoff structure such as the structure of
potential, stable, and supermodular games makes evolutionary
justifications of the equilibrium prediction. However, once we
move beyond these particular classes of population games, it
is not clear how often convergence will occur. In addition,
most of the games do not have these specific properties. The
following examples counterbalance the convergence approach
by investigating nonconvergence of evolutionary dynamics for
games, describing situations in which cycling offers the best
predictions of long run behavior.

We illustrate nonconvergent behaviors with the following
payoff matrix:⎛⎜⎜⎝

1 2 3
1 0 μ1 −μ2

2 −μ2 0 μ1

3 μ1 −μ2 0

⎞⎟⎟⎠
under the mean dynamics

ṁi =
∑

j

mjLji(m) − mi

∑
j

Lij(m).

We examine two cases: 1) replicator dynamics, i.e.,
Lij(m) = mj max(0, f(j,m) − f(i,m)), and 2) Boltzmann–
Gibbs (logit) dynamics, i.e., Lij = (eμ3f(j,m))/
(
∑

j′∈{1,2,3} eμ3f(j′,m)) (Figs. 4 and 5).

Case (a): Trajectories for (μ1, μ2) ∈ {(1, 1), (1.9, 2)}.
Case (b): Trajectories for μ3 = 45.

Delayed Evolutionary Game Dynamics: The fitness for a
player at a given time is determined by action i taken by the
player at that time, as well as by the actions of the population
it interacts with, that was taken τi units ago. More precisely,
if an anonymous user 1 chooses the strategy j at time t when
the population profile is x, then user 1 will receive the payoff
f(j, x(t)) only τk times later. Thus, the payoff at time t is
given by f(j, x(t − τj)). In the replicator dynamics with time
delays, the share of a strategy j in the population grows at a
rate that is proportional to the difference between the payoff
of that strategy delayed by an average time delay τj and
the average delayed payoff of the population. The replicator
dynamic equation is then given by

ẋj(t) = μ xj(t)

[
f (j, x(t − τj)) −

N∑
l=1

xlf (l, x(t − τl))

]
.

The parameters τj and μ do not change the evolutionary
stable strategies set but have a big influence on the stability of
the system.

IV. SLOTTED ALOHA-BASED ACCESS NETWORK

Here, we consider an Aloha system in which mobiles make
transmission decisions in an effort to maximize their utility.
We assume that mobiles are randomly placed over a plane. All
mobiles use the same fixed transmission range of r. The channel
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is ideal for transmission, and all errors are due to collision.
A mobile decides to transmit a packet or not to transmit to
a receiver when they are within a transmission range of each
other. Interference occurs as in the Aloha protocol: If more than
one neighbor of a receiver transmits a packet at the same time,
then there is a collision. Let μ be the probability that a mobile i
has its receiver R(i) within its range. When a mobile i transmits
to R(i), all mobiles within a circle of radius R centered at R(i)
cause interference to the node i for its transmission to R(i).
This means that more than one transmission within a distance
R of the receiver in the same slot causes a collision and the loss
of mobile i’s packet at R(i).

Each mobile has two possible strategies: either to transmit
(T ) or to stay quiet (S). If mobile i transmits a packet, it
incurs a transmission cost of δ ≥ 0. The packet transmission
is successful if the other users do not transmit (stays quiet)
in that given time slot; otherwise, there is a collision, and the
corresponding cost is Δ ≥ 0. If there is no collision, user i
gets a reward of V from the successful packet transmission.
We suppose that the payoff V is greater than the cost of
transmission δ. When all users stay quiet, they have to pay a
regret cost κ. If κ = 0, the game is called degenerate multiple-
access game. The ESS corresponding to any number of nodes1

of this game is given in Theorem 2.

A. Utility Function and ESS

Let A := {T, S} be the set of strategies. An equivalent inter-
pretation of strategies is obtained by assuming that individuals
choose pure strategies, and then the probability distribution rep-
resents the fraction of individuals in the population that choose
each strategy. We denote by s (resp. 1 − s) the population
share of strategy T (resp. S). The payoff obtained by a node
with k other interfering nodes when it plays T is uk(T, s) =
(−Δ − δ)(1 − ηk) + (V − δ)ηk, where ηk := (1 − s)k. The
node mutant receives uk(S, s) = −κ(1 − s)k when it stays
quiet. The expected payoff of an anonymous transmitter node
mutant is given by

f(T, s) = μ
∑
k≥0

P(K = k)uk(T, s)

= − μ(Δ + δ) + μ(V + Δ)GK(1 − s)

where GK is the generating function of K. Analogously,
we have

f(S, s) = −μκ
∑
k≥0

(1 − s)k
P(K = k).

B. Existence and Uniqueness of the ESS

We introduce two alternative information scenarios that have
an impact on decision making. Thus, we will study three
different scenarios as follows.

1The one-shot game with n nodes has 2n − 1 Nash equilibria and a
unique ESS.

Case 1) The mobile does not know whether there are zero
or more other mobiles in a given local interaction
game about to be played.

Case 2) The mobile knows if there is a transmitter at the
range of its receiver. Consequently, he transmits
with probability 1 in case no other potential inter-
ferers are present.

Case 3) “Massively dense.” The mobile is never alone in
transmitting during a slot. That means there is at
least one other mobile that is involved in the local
interaction game.

We denote α := (Δ + δ)/(V + Δ + κ), which represents
the ratio between the collision cost −Δ − δ (the cost when
there is a collision during a transmission) and the difference
between the global cost perceived by a mobile −Δ − δ − κ
(collision and regret) and the benefit V − δ (reward minus
transmission cost). When the collision cost Δ becomes high,
the value α converges to one, and when the reward or regret
cost becomes high, the value α is close to zero.

A transmitter does not know if there are other transmitters
at the range of its receiver. Then, even when it is the only
transmitter, it has to decide whether to transmit or not.

Theorem 2:

Case 1) If P(K = 0) < α, then the game has a unique
ESS s∗1 given by s∗1 = φ−1(α), where φ : s �→∑

k≥0 P(K = k)(1 − s)k.
Case 2) An anonymous user without an interfering user

receives the fitness V − δ. If P(K = 0) < ((Δ +
δ)/(V + Δ)), then the game has a unique ESS s∗2
given by s∗2 = φ−1((Δ + δ + κP(K = 0))/(V +
Δ + κ)), where φ : s �→

∑
k≥0 P(K = k)(1 − s)k.

Case 3) The game always has a unique ESS that is a solution
of the following equation:

∑
k≥1 P(K = k)(1 −

s)k = α.

Proof: A strictly mixed equilibrium s is characterized by
f(T, s) = f(S, s), i.e., φ(s) = α. The function φ is continuous
and strictly decreasing monotone on (0, 1), with φ(1) = P(K =
0) and φ(0) = 1. Then, the equation φ(s) = ((Δ + δ)/(V +
Δ + κ)) has a unique solution in the interval (P(K = 0), 1).
Thus, we have

f(s, y)−f(mut, y)=μ(V +Δ+κ)(s−mut) (φ(y)−φ(s)) .

Since s − εmut − (1 − ε)s = ε(s − mut), for y = εmut +
(1 − ε)s, one has∑

j∈{T,S}
(xj − mutj)f(j, y) > 0

(because φ is a strictly decreasing continuous function) for all
mut �= s. This completes the proof. �

C. Spatial Node Distribution and the ESS

In this part, we study two cases of a spatial node distribution.
In the first one, we assume that the number of nodes in a
local interaction is fixed, and, in the second one, we assume
that nodes are distributed over a plane following a Poisson
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distribution. These allow us to explicitly compute the ESS
and propose some optimization issues in slotted Aloha-based
wireless networks.

1) Fixed Number of Nodes in a Local Interaction: In this
part, we suppose that the population of nodes is composed
of many local interactions between n nodes, where n ≥ 2.
Let A := {T, S} be the set of strategies, and assume that
the strategy T has a delay τT and the strategy S has a
delay τS . The payoff of a player using the action ai ∈ A
against the other players when they use the multistrategy a−i =
(a1, . . . , ai−1, ai+1, . . . , an) is given by Ui(a). Each user plays
the n-player following game Γn = (N ,A, (Ui)i∈N ), where 1)
N is the set of users (nodes), in which the cardinal of N is n;
2) A is the set of pure actions (the same for every user); and
3) for every user i in N , the payoff function Ui : An → R is
given by

Ui(a) =

⎧⎪⎨⎪⎩
V − δ, if ai = T and aj = S, ∀ j �= i
0, if ai = S and {j ∈ N | aj = T} ≥ 1
−Δ − δ, if ai = T and {j ∈ N | aj = T} ≥ 2
−κ, if aj = S, ∀ j ∈ N .

Let s be the proportion of nodes in the population using the
strategy T . Then, x = (s, 1 − s) is the state of the population.
Let Δ(A) := {sT + (1 − s)S|0 ≤ s ≤ 1} be the set of mixed
strategies. The average payoff is

f(s, s) = μs
[
(−Δ − δ)

(
1 − (1 − s)n−1

)
+(V − δ)(1 − s)n−1

]
− μκ(1 − s)n.

It is not difficult to see that the one-shot game Γn has 2n − 1
Nash equilibrium; n of them are optimal in the Pareto sense.2

• If only one node transmits and the others stay quiet, then
the node that transmits gets the payoff V − δ, and the
others receive nothing and have no cost. This configuration
is an equilibrium.

• There are exactly n pure equilibria, and all these pure
equilibria are Pareto optimal.

• k (1 ≤ k < n − 1) of the n nodes choose to stay quiet,
and the n − k others are active and play the optimal mixed
strategy in the game Γn−k: (1 − α1/(n−k−1), α1/(n−k−1)),
where α := ((Δ + δ)/(V + Δ + κ)). Thus, there are ex-
actly

∑n−2
k=1

(
n
k

)
= 2n − (n + 2) partially mixed Nash

equilibria.
• The game has a unique strictly mixed Nash equilibrium

given by (1 − α1/(n−1), α1/(n−1)).
• The allocation of payoff obtained in this (partially or

completely) mixed strategy is not Pareto optimal.

Note that the first interference scenario described in the
previous section holds here because the number of interferers
is fixed and is equal to n − 1. Then, from Theorem 2 with
the function φ(s) = (1 − s)n−1, an ESS exists and is uniquely
defined by s∗ = 1 − α1/(n−1). This result generalizes the ESS
in the two-player case that we have shown in [9].

2An allocation of payoffs is Pareto optimal or Pareto efficient if there is no
other allocation that makes every node at least as well off and at least one node
strictly better off.

2) Poisson Distribution: We consider that nodes are distrib-
uted over a plan following a Poisson distribution with density
λ. The probability that a node has k neighbors is given by the
following distribution.

Cases 1 and 2: P(K = k) = ((λπr2)k/k!)e−λπr2
, k ≥ 0.

Case 3: P(K = k) = ((λπr2)k−1/(k − 1)!)e−λπr2
, k ≥ 1.

Considering those node distributions and from previous theo-
rems, the unique ESS s∗ for all cases is the solution of the
following equation:⎧⎨⎩

e−λπr2s1 = α, for case 1
e−λπr2s2 = α + κP(K=0)

V +Δ+κ , for case 2

(1 − s3)e−λπr2s3 = α, for case 3.

Thus, we obtain the following equilibria in the different
scenario:

s∗1 = log
(
α− 1

λπr2

)
s∗2 = log

((
α +

κP(K = 0)
V + Δ + κ

)− 1
λπr2

)

and s∗3 = 1 − LambertW(λπr2αeλπr2
)

λπr2

(LambertW(s) is the inverse of f(w) = wew) .

D. Optimization Issue

Here, we discuss some optimization issues that can be
attained by changing the cost parameters. We look for the
probability of success that can be achieved in a local interaction,
depending on the node distribution and also cost parameters.

1) Fixed Number of Nodes in a Local Interaction: We as-
sume here that every mobile has the same number of interfering
users, that is, n − 1. At the equilibrium point, the probability
of success Psucc(n) of a node is given by s∗(1 − s∗)n−1. The
total probability to have a successful transmission in a local
interaction, which we denote later as β, is given by

β(α, n) = nμs∗(1 − s∗)n−1 = nμ
(
1 − α

1
n−1

)
α (3)

where μ is the probability that a mobile has a receiver in its
range. The total throughput β(α, n) goes to −μα log(α) when
the number of nodes n goes to infinity. Hence, when n is very
large, the total throughput is maximized when the cost ratio
is α = 1/e. Then, the total throughput β(1/e, n) tends to the
value μ/e when the number of nodes tends to infinity.

For a fixed number of nodes n, the optimal total throughput
is obtained when α∗ = (1 − 1/n)n−1, and the corresponding
total throughput converges to the value μ/e when the number
of nodes tends to infinity, i.e.,

lim
n→∞

β(α∗, n) = lim
n→∞

μ

(
1 − 1

n

)n−1

=
μ

e
.

The optimal total throughput with an infinite number of
nodes is μ/e, which is the product of the probability μ for a
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node to have a receiver in its range and the maximum through-
put 1/e of a slotted Aloha system with an infinite number of
nodes.

2) Poisson Distribution: We look for the average total
throughput that can be achieved in a local interaction depend-
ing on distribution parameters and also cost parameters. We
consider the Poisson distribution with parameters λ and r. The
average total throughput is given by

β(α, λ) = μ
∑
k≥0

kP(K = k)Psucc(k)

where Psucc(k) is the probability of success for one node when
the number of nodes is k, which depends on the scenario
considered. Then, the total throughput that can be achieved in a
local interaction is given by a different equation depending on
the scenario considered. In case 1, we have

β(α, λ) = μs∗1
∑
k≥0

kP(K = k) (1 − s∗1)
k

≈μs∗1 (1 − s∗1) λπr2α.

In case 2, we have

β(ᾱ, λ) ≈ μs∗2 (1 − s∗2) λπr2

(
α +

κP(K = 0)
V + Δ + κ

)
.

We derive immediately the following result.
Proposition 1: The maximum total throughput under a Pois-

son distribution is attained when α = eh(λ,r) in case 1 [resp.
α = eh(λ,r) − ((κP(K = 0))/(V + Δ + κ)) in case 2], where
h is one of the two functions defined by

(λ, r) ∈ R
2
+ �→ −(1 + 2λπr2) ±

√
1 + 4(λπr2)2

2
.

In case 3, we have β(α, λ) = μs∗3
∑

k≥1 kP (K = k)(1 −
s∗3)

k ≈ μαs∗3(1 + λπr2(1 − s∗3)). In the following proposition,
we give the optimal throughput in case 3.

Proposition 2: In case 3, there exists a unique α∗
3 in which

the total throughput is maximized. α∗
3 is given by α∗

3 = (1 −
s)e−λπr2s, where s is the unique solution in [0, 1] of the
following:

1 + γ − s(2 + 5γ + γ2) + s2(4γ + 2γ2) − γ2s3 = 0.

Proof: The derivative of the function H := (∂β/∂s) is
given by

H(s) =
(
1+γ − s(2+5γ+γ2)+s2(4γ+2γ2) − s3γ2

)
e−γs.

We prove that the above function is strictly decreasing in [0, 1].
For that, it is sufficient to study the following function:

G(s) = 1 + γ − s(2 + 5γ + γ2) + s2(4γ + 2γ2) − s3γ2.

We have ∂G(s)/∂s, which is given by

∂G(s)
∂s

= −(2 + 5γ + γ2) + 2s(4γ + 2γ2) − 3s2γ2.

It is easy to show that the above function is always neg-
ative. Since H(0) = 1 + γ > 0 and H(1) = −e−γ < 0, then
the function H is positive for s ∈ [0, s̄) and is negative for

s ∈ (s̄, 1], where s̄ is the solution of the equation G(s) = 0.
Since s∗ is a decreasing function of α, we conclude that the
function Psucc is positive if s ∈ [0, s̄) and is negative if s ∈
(s̄, 1], since the optimum of function Psucc is attained at α =
(1 − s̄)e−λπr2s̄. �

E. Evolutionary Game Dynamics

Evolutionary game dynamics gives a tool for observing the
evolution of strategies in the population in time. The most
famous one is the replicator, based on replication by imitation,
which we consider here for observing the evolution of the
strategies T and S in the population of nodes.

Proposition 3: The ESS given in Theorem 2 is asymptoti-
cally stable in the replicator dynamics without delays for all
nontrivial initial state (s0 /∈ {0, 1}).

Proof: The replicator dynamics is given by

d

dt
s(t) = μ(V + Δ + κ)s(t) (1 − s(t)) (φ (s(t)) − α) .

The function φ is decreasing in (0, 1), which implies that the
derivative of the function s(1 − s)(φ(s) − α) at the ESS is
negative. Hence, the ESS is asymptotically stable. �

Now, we study the effect of the time delays on the conver-
gence of replicator dynamics to the ESSs in which each pure
strategy is associated with its own delay. Let τT (resp. τS) be
the time delay of the strategy (T ) [resp. (S)]. The replicator
dynamic equation given in (2) becomes

ṡ(t) = μ s(t) (1 − s(t)) [f (T, s(t − τT )) − f (S, s(t − τS))]
(4)

where

f (T, s(t)) := − μ(Δ + δ)
(
1 − (1 − s(t))n−1

)
+ μ(V − δ) (1 − s(t))n−1 ,

f (S, s(t)) := − μκ (1 − s(t))n−1 .

To study the asymptotic stability of the replicator dynam-
ics (4) around the unique ESS s∗1 = 1 − (Δ + δ/V + Δ +
κ)1/(n−1), we linearize (4) at s∗1. We obtain the following linear
delay differential equation:

ż(t) = −μ(n − 1)s∗1 (1 − s∗1)
n−1

× ((V + Δ)z(t − τT ) + κz(t − τS)) (5)

where z(t) = s(t) − s∗1. The following theorem gives sufficient
conditions of stability of (5) at zero.

Theorem 3: Suppose that at least one of the following con-
ditions holds.

• (V + Δ)τT + κτS < (1/(n − 1)s(1 − s)n−1μ);
• V + Δ > κ and (V + Δ)τT < ((V + Δ − κ)/((n −

1)s(1 − s)n−1μ(V + Δ + κ)));
• V + Δ < κ and κτS < ((−V − Δ + κ)/((n − 1)s(1 −

s)n−1μ(V + Δ + κ))).
Then, the ESS s is asymptotically stable.
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A proof of Theorem 3 can be obtained using , th. 3[8] and
applying it to (5).

We are looking for a necessary and sufficient condition of
stability of the differential equation (5). For finding this, we
need the following lemma.

Lemma 1 ([7]): The trivial solution of the linear delay differ-
ential equation ż(t) = −az(t − τ), τ, a > 0, is asymptotically
stable if and only if 2aτ < π.

Given this lemma, a necessary and sufficient condition of
stability of (5) at zero when delays are symmetric is given in
the following theorem.

Theorem 4 (Symmetric Delay): Suppose that τT = τS = τ .
Then, the ESS s∗1 is asymptotically stable if and only if τ <
(π/2(n − 1)μs∗1(1 − s∗1)

n−1(V + Δ + κ)).
Proof: By applying symmetric delay τT = τS = τ in (5),

one has

ż(t) = −μ(n − 1)s∗1 (1 − s∗1)
n−1 (V + Δ + κ)z(t − τ). (6)

We then apply Lemma 1 for the parameter a = μ(n − 1)s∗1(1 −
s∗1)

n−1(V + Δ + κ) > 0. �

V. W-CDMA WIRELESS NETWORKS

Here, we apply evolutionary games to noncooperative power
control in wireless networks. Specifically, we focus our study in
uplink power control in W-CDMA wireless systems. Here, the
random number of interfering mobiles with a given randomly
selected mobile is induced by the geographical position of the
mobiles compared with the base stations.

A. Decentralized Power Control

Here, we study competitive decentralized power control in a
wireless network where the mobiles use, as an uplink medium-
access-control protocol, the W-CDMA technique to transmit
to a base station. We assume that there is a large population
of mobiles that are randomly placed over a plane following a
Poisson process with density λ. We consider a random number
of mobiles interacting locally. When a mobile i transmits to its
receiver R(i), all mobiles cause interference to the transmission
from node i to receiver R(i). We assume that a mobile is within
a circle of a receiver with probability μ. We define a random
variable R that will be used to represent the distance between
a mobile and a receiver. Let ς(r) be the probability density
function for R. Then, we have μ =

∫ R

0 ς(r)dr.
Remark 1: If we assume that the receivers or access points

are randomly distributed following a Poisson process with
density ν, the probability density function is expressed by
ς(r) = νe−νr.

For uplink transmissions, a mobile has to choose between
high (H) power level named PH and low (L) power level
named PL. Let s be the population share strategy H . Hence,
the signal Pr received at the receiver from a mobile is given by
Pr = gPil(r), where g is the gain antenna, Pi ∈ {PL, PH} is
the power level used by the mobile, and r is the distance from
the mobile to the base station. For the attenuation, the most
common function is l(t) = 1/tα, with α ranging from 3 to 6.

Note that such l(t) explodes at t = 0 and, thus, in particular,
is not correct for a small distance r and large intensity λ.
Then, it makes sense to assume attenuation to be a bounded
function in the vicinity of the antenna. Hence, the last function
becomes l(t) = max(t, r0)−α. First, we note that the number
of transmissions within a circle of radius r0 centered at the
receiver is λπr2

0 . Then, the interference caused by all mobiles
in that circle is I0(s) = (λπg(sPH + (1 − s)PL)/rα−2

0 ).
Now, we consider a thin ring Aj with the inner radius

rj = jdr and the outer radius rj = r0 + jdr. The signal power
received at the receiver from any node in Aj is Pri

= gPi/rα
i .

Hence, the interference caused by all mobiles in Aj is given by

Ij(s) =

⎧⎨⎩ 2gλπrjdr
(

sPH+(1−s)PL

rα
j

)
, if rj < R,

2μgλπrjdr
(

sPH+(1−s)PL

rα
j

)
, if rj ≥ R.

Hence, the total interference contributed by all nodes at the
receiver is

I(s) = I0(s) + 2gλπ (sPH + (1 − s)PL)

×

⎡⎣ R∫
r0

1
rα−1

dr + μ

∞∫
R

1
rα−1

dr

⎤⎦
= gλπ (sPH + (1 − s)PL)

×
(

α

α − 2
r
−(α−2)
0 − 2(1 − μ)R−(α−2)

)
.

Hence, the signal-to-interference-plus-noise ratio (SINR) is
given by

SINRi(Pi, s, r) =

{
gPi/rα

0
σ+βI(s) if r ≤ r0,
gPi/rα

σ+βI(s) if r ≥ r0

where σ is the power of the thermal background noise, and β is
the inverse of the processing gain of the system. This parameter
weighs the effect of interference depending on the orthogonal-
ity between codes used during simultaneous transmissions. In
the sequel, we compute the mobile’s utility (fitness) depending
not only on his decision but also on the decision of his interfer-
ers. We assume that the user’s utility (fitness) choosing power
level Pi is expressed by

f(Pi, s) = w

R∫
0

log (1 + SINR(Pi, s, r)) ς(r)dr − ηPi.

The pricing function Pi defines the instantaneous “price” that
a mobile pays for using a specific amount of power that causes
interference in the system; w and η are cost parameters. The
parameter η can be the power cost consumption for sending
packets.

We are now looking at the existence and uniqueness of the
ESS. For this, we need the following result.

Lemma 2: For all density function ς defined in [0, R],
the function h : [0, 1] → R defined as s �−→

∫ R

0 log(1 +
SINR(PH , s, r)/1 + SINR(PL, s, r))ς(r) dr is continuous and
strictly monotonic.
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Proof: The function

s �−→ log
(

1 + SINR(PH , s, r)
1 + SINR(PL, s, r)

)
ς(r)

is continuous and integrable in r in the interval [0, R]. The
function h is continuous. Using derivative properties of an
integral with a parameter, we can see that the derivative function
of h is the function h′ : [0, 1] → R defined as

s �−→
R∫

0

∂

∂s

[
log

(
1 + SINR(PH , s, r)
1 + SINR(PL, s, r)

)]
ς(r).

We show that the term

∂

∂s

[
log

(
1 + SINR(PH , s, r)
1 + SINR(PL, s, r)

)]

is negative. Let W (s) := (1 + SINR(PH , s, r))/(1 +
SINR(PL, s, r)). The function W can be rewritten as
W (s) = 1 + ((g(PH − PL)/rα)/(σ + βI(s) + gPL/rα)),
where I(s) = (s(PH − PL) + PL)c(r) and c(r) =
λπg[(α/α − 2)r−(α−2)

0 − 2(1 − μ)R−(α−2)] if r ≥ r0

and λπg/rα−2
0 otherwise. Since W satisfies W (s) > 1

and W ′(s) = −c(r)β(PH − PL)((g(PH − PL)/rα)/((σ +
βI(s) + gPL/rα)2)) < 0, hence

∂

∂s

[
log

(
1 + SINR(PH , s, r)
1 + SINR(PL, s, r)

)]
=

W ′(s)
W (s)

< 0

i.e., h′(s) < 0. Hence, h is strictly decreasing. �
Proposition 4: For all density function ς , the pure

strategy PH dominates the strategy PL if and only if
(η/w)(PH − PL) <

∫ R

0 log((1 + SINR(PH , PH , r))/(1 +
SINR(PL, PH , r)))ς(r) dr = h(1). For all density function ς ,
the pure strategy PL dominates the strategy PH if and only
if (η/w)(PH − PL) >

∫ R

0 log((1 + SINR(PH , PL, r))/(1 +
SINR(PL, PL, r)))ς(r) dr = h(0).

Proof: We decompose the existence of the ESS in several
cases. 1) PH is preferred over PL: The higher power level
dominates the lower if and only if f(PH , PH) > f(PL, PH)
and f(PH , PL) > f(PL, PL). These two inequalities imply

η

w
(PH − PL) <

R∫
0

log
(

1 + SINR(PH , PH , r)
1 + SINR(PL, PH , r)

)
ς(r)dr.

2) PL is preferred over PH : Analogously, the lower
power dominates the higher power if and only if
f(PL, PH) > f(PH , PH) and f(PL, PL) > f(PH , PL),
i.e., (η/w)(PH−PL) >

∫ R

0 log((1 + SINR(PH , PL, r))/(1 +
SINR(PL, PL, r)))ς(r) dr. �

The following result gives sufficient conditions for existence
and uniqueness of the ESS in the W-CDMA uplink power
control.

Proposition 5: For all density function ς , if h(1) <
(η/w)(PH − PL) < h(0), then there exists a unique ESS s∗

that is given by s∗ = h−1((η/w)(PH − PL)).
Proof: Suppose that the parameters w, η, PH , and PL

satisfy the following inequality: h(1) < (η/w)(PH − PL) <
h(0). Then, the game has no dominant strategy. A mixed
equilibrium is characterized by f(PH , s) = f(PL, s). It is
easy to see that this last equation is equivalent to h(s) =
(η/w)(PH − PL). From Lemma 2, we have that the equa-
tion h(s) = (η/w)(PH − PL) has a unique solution given by
s∗ = h−1((η/w)(PH − PL)). We now prove that this mixed
equilibrium is an ESS. To prove this result, we compare
s∗f(PH ,mut) + (1 − s∗)f(PL,mut) and mutf(PH ,mut) +
(1 − mut)f(PL,mut) for all mut �= s∗. The difference be-
tween the two values is exactly w(s∗ − mut)(h(mut) −
h(s∗)). According to Lemma 2, h is a decreasing function.
Hence, (s∗ − mut)(h(mut) − h(s∗)) is strictly positive for all
strategy mut different from s∗. We conclude that the mixed
equilibrium (s∗, 1 − s∗) is an ESS. �

From the last proposition, we can use the pricing parameter
η as a design tool for creating an incentive for the user to adjust
their power control. We observe that the ESS s∗ decreases
when η increases. This means that the mobiles become less
aggressive as the pricing function increases, and the system can
limit aggressive requests for the SINR.

B. Evolutionary Game Dynamics in W-CDMA

Next, we use the replicator dynamics for observing the evo-
lution of the strategies PH and PL in the population of nodes.
We study the effect of the time delays on the convergence of the
replicator dynamics to the ESSs in which each pure strategy is
associated with its own delay. Let τH (resp. τL) be the time
delay of the strategy PH (resp. PL). The delayed replicator
dynamic equation given in (2) becomes

ṡ(t) = μs(t) (1 − s(t)) Δ̂(t) (7)

where Δ̂(t) := f(PH , s(t − τH)) − f(PL, s(t − τL)).
Proposition 6: The ESS s∗ = h−1((η/w)(PH − PL)) is as-

ymptotically stable under the replicator dynamics without time
delays for all nontrivial initial state.

Proof: The replicator dynamics without time delays is
given by ṡ(t) = μws(t)(1 − s(t))(h(s(t)) − η(PH − PL)/w).
The function h is decreasing in (0, 1), which implies that
the derivative of the function s(1 − s)(h(s) − η(PH − PL)/w)
at the ESS s∗ = h−1((η/w)(PH − PL)) is negative. Hence,
the system is asymptotically stable at s∗ = h−1((η/w)(PH −
PL)). �

To study the asymptotic stability of the W-CDMA network
under the delayed replicator dynamics (4) around the unique
ESS s∗ = h−1((η/w)(PH − PL)), we linearize (7) at s∗. Thus,
we obtain the following delayed differential equation (DDE):

ẏ(t) = μs∗(1 − s∗)
(

y(t − τH)
∂

∂s
f(Pi, s)|s=s∗

−y(t − τL)
∂

∂s
f(PL, s)|s=s∗

)
(8)
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where τH (resp. τL) is the time delay of PH (resp. PL). The
following theorem gives sufficient conditions of stability of (8)
at zero.

Theorem 5: Let PD = PH − PL. Suppose that at least one
of the following conditions holds:

• μτH < ((Φ1 + Φ2)/(Φ1h
−1((η/w)PD)(1 −

h−1((η/w)PD))(Φ1 + |Φ2|)));
• Φ1τH + |Φ2|τL < ((Φ1 + Φ2)/(μh−1((η/w)PD)(1 −

h−1((η/w)PD))(Φ1 + |Φ2|))).
Then, the ESS s∗ is asymptotically stable. Moreover, if τH =

τL = τ , the ESS is asymptotically stable if and only if

τ <
π

2μ

1
h−1

(
η
wPD

) (
1 − h−1

(
η
wPD

))
(|Φ1| + |Φ2|)

.

Proof: To derive the sufficient condition of stability, we
need to compute the value of (∂/∂s)f(Pi, s) at s = s∗. Apply-
ing the rule of Lebesgue integration of a function with several
parameters, one has

∂

∂s
f(Pi, s)|s=s∗ = w

R∫
0

[
∂
∂sSINR(Pi, s, r)

]
s=s∗

1 + SINR(Pi, s∗, r)
ς(r)dr.

Define T as T (r) = 1/rα
0 if r ≤ r0 and as 1/rα if r ≥ r0.

Since Π := SINR(Pi, s, r) = ((gPi/rα
0 )/(σ + βI(s))) if r ≤

r0 and is equal to (gPi/rα/σ + βI(s)) otherwise, where
I(s) = (s(PH − PL) + PL)c(r), then

c(r)=

⎧⎨⎩λπg
[

α
α−2r

−(α−2)
0 −2(1−μ)R−(α−2)

]
, if r≥r0

λπg

rα−2
0

, otherwise.

Thus

∂

∂s
Π
∣∣∣∣
s=s∗

= −gPiT (r)c(r)β(PH − PL)
(σ + βI(s∗))2

< 0.

Let

Φ1 := − W

R∫
0

T (r)c(r)ς(r)
(σ + βI(s∗))2 (1 + SINR(PH , s∗, r))

dr,

Φ2 :=W

R∫
0

T (r)c(r)ς(r)
(σ + βI(s∗))2 (1 + SINR(PL, s∗, r))

dr

where W = −wgPHβ(PH − PL). One has Φ1 + Φ2 > 0.
A sufficient condition of the stability of the ESS us-
ing the stability of the trivial solution of the DDE (8)
is then given by μτH < ((Φ1 + Φ2)/(Φ1h

−1((η/w)PD)(1 −
h−1((η/w)PD))(Φ1 + |Φ2|))). Note that this stability condi-
tion is independent of τL. The other results are derived as in
Theorem 3. �

C. More Than Two Power Levels

For continuously differentiable evolutionary game dynamics,
a local stability and asymptotic stability areas of equilibria and
the ESS (when it exists) can be established by linearizing the
DDEs at the rest point. When an interior rest point exists under

Fig. 6. Impact of n in the probability of success in the Dirac distribution.

the nondelayed replicator, a necessary and sufficient condition
of stability under the delayed replicator dynamics is that all
roots of the following characteristic equation:

det

(
λI − K

∑
b∈A

Bbe−τbλ

)
= 0 (9)

have negative real parts. I is the identity matrix with the same
size as the matrix Bb, which is the Jacobian of the system
at the rest point. This transcendental equation in λ is, in
general, difficult to solve. If x is stable under the nondelayed
replicator dynamics, then a sufficient condition of stability
under the delayed replicator dynamics is obtained for specific
norms of the matrix K

∑
b∈A Bb. For example, we can consider

K
∑

b∈A τb‖Bb‖∞ < 1, where ‖Bb‖∞ = maxi,j |Bb
ij |.

VI. NUMERICAL INVESTIGATION

A. Slotted Aloha-Based Wireless Networks

We first show the impact of the density of nodes on the
probability of success at ESS equilibrium with different values
of α, which is the ratio between the collision cost and the global
reward (benefit minus global cost) of a user. In all examples,
we consider a probability μ = 0.8 for each node of having a
receiver in its range.

1) Optimization of the Total Throughput: In Fig. 6, we
observe the total throughput β(α, n) depending on the number
of nodes n and with different values of α. For α = 1/3, we
observe that the total throughput is increasing in that case with
the number of nodes, which seems nonintuitive. The reason
is that the number of transmitted mobiles at the ESS, i.e., s∗,
is exponentially decreasing with n. Another important result is
that it may have a finite number of interferers that maximize the
total throughput like in Fig. 6 with α = 0.2. When the ratio α is
small, the total throughput is decreasing in n, as shown in Fig. 6
for α = 0.05. Then, depending on the cost parameters, we have
a different behavior of the total throughput in the function of
the density of nodes.

In Fig. 7, we represent the probability of success β(α, n) as
a function of α for several values of n. We observe that the
probability of success at optimal value α∗ = (1 − 1/n)n−1 is
increasing with n and tends to the value 1/e. We observe the
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Fig. 7. Probability of success in the Dirac distribution as a function of (α, n).

Fig. 8. Delay effect in the Dirac distribution.

same behavior when the nodes are randomly distributed over a
plan following a Poisson distribution.

2) Dynamics: Now, we study the effect of the time delays on
the convergence of the replicator dynamics to the evolutionary
stable strategies in which each pure strategy is associated with
its own delay. In Fig. 8, we plot the evolution of the fraction
of transmitters for different values of delays when the random
variable K is a Dirac δ{n−1}. We took n = 4, Δ = δ = 1/4,
and V = 1. The initial condition is 0.02, and the delays τT and
τS are between 0.02 and 7. For the small delays (τT , τS) =
(0.02, 0.02) and (τT , τS) = (3, 2), the system is stable. For
the delays τH = 7 and τS = 5, the system is unstable, and the
proportion of transmitters in the cell oscillates around the ESS.

In Fig. 9, we describe the numerical application of our
evolutionary game model with a Poisson distribution. We took
kmax = 4, Δ = δ = κ = 1/4, λ = 1, and V = 1. The initial
condition in all these figures is 0.02. In Fig. 9, we compare the
evolution of the fraction of transmitters varying the parameter
of density λ between 0.1 and 5 for cases 1, 2, and 3, respec-
tively. We observe that we have stability for all cases.

Now, we study the effect of the time delays on the conver-
gence of the replicator dynamics to the ESSs in which each
pure strategy is associated with its own delay. The fraction
of transmitters in the population is represented in Fig. 10 for
λ = 0.5 and r = 1. The delays τT and τS are between 0.02
and 7. The system is stable for τT = τS = 0.02 or τT = 3,
τS = 2. For τT = 7 and τS = 5, the system is unstable. We

Fig. 9. Evolution of the fraction of transmitters versus λ (without delays).

Fig. 10. Impact of the time delay on the stability of the replicator dynamics
(case 1).

Fig. 11. Evolution of the fraction of transmitters versus λ.

display an oscillatory behavior of the population as a function
of time. Trajectories are seen to converge to periodic ones.
All turn out to confirm stability conditions that we obtained in
Theorem 3. In Fig. 11, we compare the evolution of the fraction
of transmitters varying the parameter of density λ between 0.1
and 5 for cases 1, 2, and 3, respectively. In this figure, the
time delays are 3 and 2, respectively. Note that, in this figure,
the equilibrium point is a decreasing function in the density
parameter λ. Indeed, when the density of nodes increases, the
number of mobiles that share a receiver increases. To avoid
collision, the nodes decrease the probability of transmission.
We also observe that for λ = 5, we have stability, but the
convergence speed is slower than for λ = 0.1.
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Fig. 12. Average rate of a mobile at equilibrium versus the density of nodes λ
for η = 0.92, 0.97.

Fig. 13. ESS versus the density of nodes λ for η = 0.92, 0.97.

B. W-CDMA Wireless Networks

1) Optimization of the Average Throughput: We first show
the impact of the density of nodes and pricing on the ESS
and the average throughput. We assume base stations that are
randomly placed over a plane following a Poisson process
with density ν, i.e., ς(r) = νe−νr. We recall that the rate of
a mobile using power level Pi at the equilibrium is given
by w

∫ R

0 log(1 + SINR(Pi, s, r))ς(r)dr. We took the following
parameters: r0 = 0.2, w = 20, σ = 0.2, α = 3, β = 0.2, and
R = 1. First, we show the impact of the density of nodes λ on
the ESS and the average throughput. In Figs. 12 and 13, we
depict the average throughput obtained at the equilibrium and
the ESS, respectively, as a function of the density λ. We recall
that the interference for a mobile increases when λ increases.
We observe that the mobiles become less aggressive when the
density increases. In Fig. 12, we observe that it is important to
adapt the pricing as a function of the density of nodes. Indeed,
we observe that for a low density of nodes, lower pricing
(η = 0.92) gives better results than higher pricing (η = 0.97).
When the density of the nodes increases, better performance is
obtained with higher pricing.

2) Dynamics: Now, we study the impact of the receiver
distributions on the ESS. Fig. 14 represents the fraction of the
population using the high power level for different initial states
of the population: 0.99, 0.66, 0.25, and 0.03. We observe that
the choice of the receiver distributions changes the ESS. For the
impact of the time delay on the convergence of the replicator
dynamics to the ESS, we obtain the same behavior as in the
slotted Aloha-based wireless networks.

Fig. 14. Convergence to the ESS in the W-CDMA system: quadratic
distribution.

VII. CONCLUDING REMARKS

This paper has illustrated the potential of evolutionary games
to study new robust equilibrium concepts and to describe the
dynamics of competition in networking. We have done so
through a study of an access game and a power control problem.
To be applicable to these problems, we have extended the
classical pairwise interaction model of evolutionary games,
which has been used in biology to general types of interactions,
to be more appropriate for networking.

ACKNOWLEDGMENT

The authors would like to thank all reviewers for their
constructive comments and remarks.

REFERENCES

[1] E. Altman, R. Elazouzi, Y. Hayel, and H. Tembine, “Evolutionary power
control games in wireless networks,” in Proc. 7th IFIP Netw., Singapore,
May 5–9, 2008, pp. 930–942.

[2] H. Gintis, Game Theory Evolving: A Problem-Centered Introduction to
Modeling Strategic Interaction. Princeton, NJ: Princeton Univ. Press,
2000.

[3] J. Hofbauer and K. Sigmund, “Evolutionary game dynamics,” Bull. Amer.
Math. Soc., vol. 40, no. 4, pp. 479–519, 2003.

[4] W. H. Sandholm, Population Games and Evolutionary Dynamics.
Cambridge, MA: MIT Press, 2010.

[5] J. M. Smith and G. R. Price, “The logic of animal conflict,” Nature,
vol. 246, no. 5427, pp. 15–18, Nov. 1973.

[6] P. Taylor and L. Jonker, “Evolutionary stable strategies and game dynam-
ics,” Math. Biosci., vol. 16, pp. 76–83, 1978.

[7] H. Tembine, E. Altman, and R. El-Azouzi, “Delayed evolutionary game
dynamics applied to the medium access control,” in Proc. IEEE MASS,
Bionetworks, 2007, pp. 1–6.

[8] H. Tembine, E. Altman, and R. El-Azouzi, “Asymmetric delay in evo-
lutionary games,” in ACM Proc. ValueTools, Nantes, France, Oct. 2007,
vol. 321.

[9] H. Tembine, E. Altman, R. El-Azouzi, and Y. Hayel, “Multiple access
game in ad-hoc network,” in ACM Proc. GameComm, Nantes, France,
Oct. 2007, vol. 321.

[10] H. Tembine, E. Altman, R. El-Azouzi, and Y. Hayel, “Evolutionary games
with random number of interacting players applied to access control,” in
Proc. IEEE/ACM WiOpt, Apr. 2008, pp. 344–351.

[11] H. Tembine, E. Altman, R. El-Azouzi, and W. H. Sandholm, “Evolution-
ary game dynamics with migration for hybrid power control in wireless
communications,” in Proc. IEEE CDC, 2008, pp. 4479–4484.

[12] H. Tembine, “Evolutionary network formation games and fuzzy coalition
in heterogeneous networks,” in Proc. IFIP Wireless Days, Dec. 2009, to
be published.

[13] T. Vincent and T. Vincent, “Evolution and control system design,” IEEE
Control Syst. Mag., vol. 20, no. 5, pp. 20–35, Oct. 2000.



646 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 3, JUNE 2010

Hamidou Tembine received the M.S. degrees in
applied mathematics and in pure mathematics from
Ecole Polytechnique, Palaiseau, France, and the Uni-
versity Joseph Fourier, Grenoble, France, in 2006.
He is currently working toward the Ph.D. degree at
the Avignon University, Avignon, France.

His current research interests include evolution-
ary games, mean field games, stochastic popula-
tion games, differential population games, and their
applications.

Eitan Altman received the B.Sc. degree in electrical
engineering in 1984, the B.A. degree in physics in
1984, and the Ph.D. degree in electrical engineering
in 1990 from the Technion-Israel Institute, Haifa,
Israel, and the B.Mus. degree in music composition
from Tel-Aviv University, Tel-Aviv, Israel, in 1990.

Since 1990, he has been with the Institut National
de Recherche en Informatique et en Automatique
(INRIA), Sophia-Antipolis, France. He is in the edi-
torial board of scientific journals ACM/Kluwer Wire-
less Networks, Journal of Discrete Event Dynamic

Systems, and Journal of Economy Dynamic and Control. He served in the
journals Stochastic Models, Elsevier Computer Networks, and SIAM Journal
on Control and Optimization. He has published more than 140 papers in
international refereed scientific journals. His current research interests include
performance evaluation and control of telecommunication networks, in partic-
ular, congestion control, wireless communications, and networking games.

Dr. Altman has been the General Chairman or the (Co)Chairman of the
program committee of several international conferences and workshops (on
game theory, networking games, and mobile networks).

Rachid El-Azouzi received the Ph.D. degree in ap-
plied mathematics from Mohammed V University,
Rabat, Morocco, in 2000.

He was with the Institut National de Recherche en
Informatique et en Automatique, Sophia-Antipolis,
France, for postdoctoral and Research Engineer po-
sitions. Since 2003, he has been a Researcher with
the University of Avignon, Avignon, France. His
research interests include mobile networks, perfor-
mance evaluation, TCP, wireless networks, resource
allocation, networking games, and pricing.

Yezekael Hayel received the M.Sc. degrees in com-
puter science and in applied mathematics from the
University of Rennes 1, Rennes, France, in 2001 and
2002, respectively, and the Ph.D. degree in computer
science from the University of Rennes 1 and the
Institut National de Recherche en Informatique et en
Automatique, Sophia-Antipolis, France.

He is currently an Assistant Professor with the
University of Avignon, Avignon, France. His re-
search interests include wireless networks, perfor-
mance evaluation of networks, and bio-inspired

networking.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


