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Abstract—The success of BitTorrent has fostered the development of variants to its basic components. Some of the variants adopt

greedy approaches aiming at exploiting the intrinsic altruism of the original version of BitTorrent in order to maximize the benefit of

participating to a torrent. In this work, we study BitTyrant, a recently proposed strategic client. BitTyrant tries to determine the exact

amount of contribution necessary to maximize its download rate by dynamically adapting and shaping the upload rate allocated to its

neighbors. We evaluate in detail the various mechanisms used by BitTyrant to identify their contribution to the performance of the

client. Our findings indicate that the performance gain is due to the increased number of connections established by a BitTyrant client,

rather than to its subtle uplink allocation algorithm; surprisingly, BitTyrant reveals to be altruistic and particularly efficient in

disseminating the content, especially during the initial phase of the distribution process. The possible gain of a single BitTyrant client,

however, disappears in the case of a widespread adoption: our results indicate a severe loss of efficiency that we analyze in detail.

Index Terms—Peer-to-peer, BitTorrent, performance analysis.
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1 INTRODUCTION

BITTORRENT [1] is a peer-to-peer (p2p) content distribution
application that has been adopted by millions of end

users [2], [3], [4]. BitTorrent (BT) has also attracted the
attention of a large body of researchers that focused on its
building blocks (such as the incentives, as in [5]) and its
performance analysis through measurement [6], [7], [8],
simulation [9], [10], and analytical [11], [12], [13] studies.
These previous works indicated that the key of BitTorrent
success can be substantially attributed to its scalability and
its greater robustness to free riding in comparison to
previous p2p proposals.

Some recent studies [14], [15], [16] have proposed new
clients, that are compliant to BitTorrent message protocol,
but adopt greedy strategies with the purpose of optimizing
the local performance of the modified client. For example,
Locher et al. [15] designed the BitThief client, that tries to
maximize the content download rate without uploading
any content. Another prominent example is that of
BitTyrant [16], which tries to maximize its download rate
by shaping its contribution to remote peers. Note that while
BitThief client is intrinsically a free rider, BitTyrant makes
its whole upload capacity available to spread the content.

Our research interest is twofold. First, we want to evaluate

the competitive advantage of greedy clients over standard

ones and hence the possibility of wide adoption by the peer-
to-peer community. Second, we want to investigate the
possible effects that a widespread adoption could induce to
the system performance. We first focus on a single client (we
chose BitTyrant in this work because it merges several greedy
techniques discussed in the literature) and characterize its
performance gain over standard clients. We do so by isolating
its key mechanisms to quantify their contribution to the
improved performance. Some of these results were presented
in a preliminary form in [17]. We then make the case for a
gradual adoption of BitTyrant by users and discuss its
implications on the whole community.

The main contributions of this work can be summarized
as follows:

. we generalize the analytical model presented in [16]
to identify the extent to which BitTorrent can be
exploited by greedy clients. Unlike previous results
discussed in [16], our findings indicate that exploit-
ing the altruism of BitTorrent is effective only
during a short transient regime when the system is
bootstrapping;

. we study the different components of a prominent
example of a greedy client, BitTyrant [16], and we
evaluate to what extent each part of the proposed
approach is responsible for the performance
achieved; we also compare the results with the ones
obtained by the mainline BitTorrent client;

. we cast light on the subtle choke algorithm used by
BitTyrant: while we show its unexpectedly positive
impact on system performance—especially during
the startup phase of content distribution—we also
point to an undesired periodic behavior that limits
its performance;

. finally, we make the case for a gradual adoption of
the BitTyrant client by the mass; we show that a
widespread adoption of BitTyrant clients seems
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unrealistic, and in any case the increasing adoption
of BitTyrant progressively degrade the system
performance.

2 BACKGROUND

In this section, we briefly outline the key algorithms used by
BitTorrent [1], BitTyrant [16], and BitThief [15].

2.1 BitTorrent

The BT protocol is designed for the bulk data transfer. A file
is divided into pieces, which can be downloaded in parallel
from peers belonging to a specific torrent. A central entity,
the tracker, keeps track of all peers sharing the content and
provides new peers a random set of peers to connect to. The
neighborhood of a peer is called the peer set.

A BT peer executes two key algorithms, one that is used to
select pieces of the content to download (piece selection
algorithm) and one that is used to select remote peers to
upload data to (the choke algorithm). In this work we focus on
the choke algorithm. With the choke algorithm, a node builds
a subset of its peer set that is termed the active set: peers in
the active set are entitled to request pieces of the content. The
choke algorithm is executed every 10 seconds: all remote
peers are ranked based on their upload rate and only the firstk
top peers are unchoked. Along with regular unchokes, every
30 seconds a peer randomly unchokes ! peers irrespectively
of their rank: this technique is termed optimistic unchoke and
allows a peer to explore its peer set and discover fast
neighbors. The choke algorithm aims at maintaining a high
level of reciprocation among peers, being that peers uploading
less have less chances to be unchoked by their neighbors.

In the first version of BT—that we term BTold—k and !
are empirically set parameters: generally k ¼ 4 and ! ¼ 1.
The upload bandwidth of a peer is shared equally (beside
TCP effects) among all unchoked peers; the portion of the
bandwidth that each peer is able to obtain is defined as equal
split. In the latest version of the BT mainline protocol the
choice of the parameters in the choke algorithm is different:
the number of regular unchokes is determined as a function
of the uplink capacity C of a peer, that is k ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6 � C
p

c (C is
expressed in KBytes/s). Moreover, ! ¼ 2. With these new
parameters, peers with a high uplink capacity open more
active connections.

Note that the values of the parameters k and ! in BT and
BTold are completely arbitrary; the interested reader can find
a discussion about the impact of these parameters in [18].

In rest of the paper, BT is the main reference to evaluate
the performance of greedy clients, whereas in the online
extension of this work we include the results we obtained
focusing on BTold.

2.2 BitThief

The primary aim of this client was to show the intrinsic
weakness of the optimistic unchoke adopted by BT. BitThief
continues to contact the tracker in order to increase as much
as possible its peer set size. As a consequence, the
probability to be optimistically unchoked increases, and
the client can receive the content without uploading at all.

2.3 BitTyrant

BitTyrant (hereinafter BTyr) adopts the same mechanisms
of BitThief, but also introduces a new peer selection

algorithm. As for BT, the number of unchoked peers is a
function of a peer’s uplink capacity. However, BTyr uses a
dynamic bandwidth allocation algorithm by which uplink
capacity is assigned on a per-connection basis. During the
initial phase of the download process, a BTyr peer allocates
the same bandwidth c ¼ 15 KBytes/s to all connections.
This initial value has been derived in [16] from a measured
peer bandwidth distribution in order to guarantee that the
probability of reciprocation (i.e., the probability of being
unchoked) from remote peers is high.

Subsequently, the alternative BTyr choke algorithm
works as follows: if a remote peer reciprocates for at least
three unchoking intervals, the bandwidth allocated for this
active connection is reduced by a factor of 0.9. If an
unchoked neighbor stops reciprocating, then the bandwidth
allocated to the active connection is increased by a factor
1.2. Every choke interval (set to 10 seconds), neighbors are
sorted according to the ratio of the amount of data received
to the amount of data sent in the last 20 seconds; the
available uplink capacity is then progressively allocated to
remote peers in descending order. Hence, the amount of
bandwidth allocated to a remote peer should converge to
the exact value required to guarantee reciprocation.

3 MISUSE OPPORTUNITIES IN BITTORRENT:
AN ANALYTICAL PERSPECTIVE

In this section, we analyze the extent to which the altruistic
behavior of BT might be exploited by self-interested peers.
We adopt a data agnostic approach, i.e., we assume that each
peer has always pieces that every other is missing. The
analysis extends and formalize rigorously the key observa-
tions made in [16], which are behind the design of BTyr.

Note that the analysis is focused on the possible
exploitation of BT: how a client is going to use this
information is independent from the analysis. In the rest
of the paper, we will focus only on BTyr as strategic client,
because it merges several greedy techniques discussed in
the literature. We do not consider here the BitThief scheme
since the evaluation of its benefits are straightforward.

3.1 Matching Time

As noted in prior studies [19], [20], the choke algorithm can
be seen as a distributed algorithm for the stable b-matching
problem, that converges to a (weakly) stable state in which
peers are matched based on their upload capacity and no
peer has an incentive to deviate from its matches. The
algorithm converges to a stable state through a series of
exploration rounds (i.e., optimistic unchokes) in which
unstable matchings are formed. During this intermediate
phase a peer may be matched to remote peers that cannot
sustain a fair reciprocation. This implies that some peers
might offer more upload bandwidth than they receive.

The time it takes for the algorithm to converge could be
exploited by a peer striving for maximizing the reciproca-
tion it receives from remote peers. In the following, we
derive a rough estimation of the convergence time, termed
matching time hereinafter. Our analysis of the matching
time: 1) assumes a large swarm, with a fixed peer
population, 2) does not take into account content avail-
ability, and 3) ignores that some remote peers could be not
willing to reciprocate. The last issue is going to be
addressed in the following section.
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During a time interval equal to Topt, a peer discovers
(using optimistic unchokes) the equal split of ! new peers

and its equal split is discovered by other ! new peers. Given
peer i with equal split ui, let Ai be the set of its active

connections (i.e., the neighbors it has unchoked). We denote
with bðuÞ and BðuÞ, respectively, the Probability Density
Function (PDF) and the cumulative distribution function

(CDF) of the equal split. bðuÞ (BðuÞ) can be evaluated
through an empirical distribution.1

The expected number of interactions peer i needs to find

a peer with higher equal split is geometrically distributed,
with expected value 1=ð1�BðuiÞÞ. The expected number of

interactions needed to discover a number of peers equal to
the number of active connections jAij is simply

jAij=ð1�BðuiÞÞ. A peer has one interaction every
Topt=ð2!Þ seconds, then the matching time is

Topt
2!

jAij
1�BðuiÞ

: ð1Þ

The equation shows that the matching time increases when

the number of active connections or the equal split increases.
We derived the matching time for BT clients with

different uploading capacities (cf. Appendix A.1, which

can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.
94). Matching time for BT clients is as large as 10 hours and

it is not negligible with respect to typical download times.
Long matching times pave the way for clients such as

BTyr that tries to exploit high-capacity peers as long as their

discovery phase has not converged yet.

3.2 Probability of Reciprocation and Expected
Download Rate

The extremely long convergence time toward a stable
matching has encouraged the design of subtle techniques

[16] to exploit peers until a global matching is reached; then
peers would be immune to greedy strategies. A greedy

peer, however, is not guaranteed to be reciprocated from
remote peers at all times during the matching time.

We show this by studying the evolution in time of the
probability of reciprocation and its impact on the expected
download rate of a peer. The following analysis constitutes
a significant extension to that sketched in [16]. As noted
above, the download rate peer i can achieve varies over
time. Indeed peer i can select its jAij best uploaders from a
progressively larger set, but reciprocation from its peer set
fluctuates: reciprocation from peers with higher capacity
decreases (because they discover similar peers), while
reciprocation from lower capacity peers increases (because
they are progressively choked by their best uploaders).
Being that each peer optimistically unchokes ! new peers
every Topt, we consider a discrete time system where every
Topt=ð2!Þ seconds each peer discovers the equal split of a
new peer. Let us define �ðui; uj; kÞ the probability that a
node with equal split uj is willing to reciprocate with a node
with equal split ui at the kth interaction. The probability that
a randomly selected peer is willing to reciprocate to peer i
at the kth interaction is

Z 1
0

�ðui; v; kÞbðvÞdv;

and the expected number of peers not reciprocating peer i

(RiðkÞ) is

RiðkÞ ¼ k 1�
Z 1

0

�ðui; v; kÞbðvÞdv
� �

: ð2Þ

We simplify our analysis assuming that: 1) the number of
peers not reciprocating peer i is always equal to the integer
nearest to Ri (we denote it as R̂i) and 2) that these peers are
the best uploaders of peer i. These assumptions are going to
be justified by our asymptotic analysis for �ðui; v; kÞ. In fact
we are going to show that, as k diverges, �ðui; v; kÞ
converges to 0 and 1, respectively, for ui < v and for
ui > v. Hence, at least asymptotically, peer i will not be
reciprocated by all its neighbors with higher equal split (its
best uploaders). This justifies assumption (2). Moreover,
being that the reciprocation probability exhibits asympto-
tically a sharp transition from 0 to 1 at v ¼ ui, the number of
nonreciprocating peers is distributed approximately as a
binomial distribution with parameters k and BðuiÞ. This
justifies assumption (1), being that a binomial distribution is
concentrated (in the sense of the law of large numbers)
around its mean for large value of k.

Given these two assumptions, if we rank the uploaders
of peer i on the basis of their equal split in decreasing order,
peer i at the kth interaction will reciprocate peers with rank
from R̂iðkÞ þ 1 to

wi ¼ R̂iðkÞ þ jAij ¼ bRiðkÞ þ 0:5c þ jAij; ð3Þ

assuming that it is willing to open up to jAij connections.
We use basic order statistic results [21] to derive the equal
split PDF of the zth uploader of peer i (out of the k
neighbors peer i has interacted with by the kth interaction):

bðzÞðv; kÞ ¼ k!BðvÞk�zð1�BðvÞÞz�1

ðz� 1Þ!ðk� zÞ! bðvÞ: ð4Þ

Note that this distribution is the same for all the peers,

because optimistic unchoking selects neighbors uniformly

at random.
We derive the expected download rate of peer j as:

XR̂iðkÞþjAij

z¼R̂iðkÞþ1

Z 1
0

vbðzÞðv; kÞdvþ !
Z 1

0

vbðvÞdv; ð5Þ

where the first term corresponds to the aggregated rate
from active connections, while the second one to the
aggregated rate from optimistic unchoking.

Finally, we derive the reciprocation probability. The

probability that peer i is going to be reciprocated from peer

j at the following interaction is equal to the probability that

peer i has a higher equal split than that of the wjth uploader

of peer j2, then

�ðui; uj; kþ 1Þ ¼
Z ui

0

bðwjÞðv; kÞdv: ð6Þ
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1. In this work, we use the same empirical distribution as in [16].
2. If k < wj ¼ R̂jðkÞ þ jAjj, peer j will be always willing to reciprocate

with a new peer.



The system starts from a state where every peer has an empty
active set and it is willing to reciprocate with everyone else
(�ðui; uj; 0Þ ¼ 1), then (2), (3), (4), and (6) can be used to
evaluate the evolution of reciprocation probabilities.

Now we are going to deepen our understanding of the
system, by studying the asymptotic limit of the reciproca-
tion probability, and the relation of these results with the
matching time as defined in Section 3.1.

First, we are going to show that, as k diverges, �ðui; v; kÞ
converges to 0 and 1, respectively, for ui < v and for ui > v.
If this is the case, then

lim
k!1

RjðkÞ
k
¼
Z uj

0

bðvÞdv ¼ BðujÞ:

Let us define

�ðujÞ ¼ lim
k!1

1�
Z 1

0

�ðuj; v; kÞbðvÞdv
� �

;

we will then show that �ðujÞ ¼ BðujÞ. We observe that �ðuÞ
is a decreasing function of u (and hence in particular
invertible), because the reciprocation probability �ðu; v; kÞ is
increasing in u. We observe that wj behaves asymptotically
as k�ðujÞ, hence we can apply the results for central quantiles
(or central order statistics) [21] to bwjðv; kÞ, concluding that it
is asymptotically distributed as a normal with mean
B�1ð�ðujÞÞ and variance

�ðujÞð1� �ðujÞÞ
k bðB�1ð�ðujÞÞÞ
� �2 !k;1 0:

Being that the variance converges to zero, we can derive
from (6) that �ðui; uj; kÞ converges to 1 if B�1ð�ðujÞÞ—the
mean of the Gaussian—is included in the integration range,
otherwise it converges to zero. In conclusion �ðui; uj; kÞ
converges to 0 and 1, respectively, for ui < B�1ð�ðujÞÞ and
for ui > B�1ð�ðujÞÞ. Due to the monotonicity of BðÞ and �ðÞ,
ui < B�1ð�ðujÞÞ if and only if uj < ��1ðBðuiÞÞ. From (2) it
follows that

lim
k!1

RiðkÞ
k
¼ lim

k!1
1�

Z 1
0

�ðui; v; kÞbðvÞdv
� �

;

¼
Z ��1ðBðuiÞÞ

0

bðvÞdv ¼ Bð��1ðBðuiÞÞÞ:

By definition this is also equal to �ðuiÞ:

Bð��1ðBðuiÞÞÞ ¼ �ðuiÞ:

This equality holds for every value of ui, then it has to be
�ðÞ ¼ BðÞ. We have so concluded our proof that �ðui; uj; kÞ
converges to 0 and 1, respectively, for ui < uj and for ui > uj.

We may want to quantify the convergence time similarly to
what done in the previous section for the simplified model. It
is natural to consider the expected time needed for peer i to
find jAij peers 1) with higher equal split (as for the matching
time) and 2) willing to reciprocate. This second requirement
makes this convergence time longer than the matching time
(already several hours for high capacity clients). Hence, the
refined analysis in this section points out an even longer
phase during which the system can be exploited by greedy
peers. At the same time, it shows that the duration of the

exploitable phase is not the only important aspect. In fact, the
probability to reciprocate to peers with lower bandwidth
converges to zero (the faster the lower the bandwidth is). This
limits the extent to which greedy peers can exploit compliant
ones. In Appendix A.2, which can be found on the Computer
Society Digital Library, we quantify the possible gain by
numerical simulations both of the time evolution of the
probability of reciprocation and the expected download rate
for different values of upload capacity.

3.3 Discussion

Our data agnostic analysis indicates that the exploiting BT
clients appears tempting in a first instance, if one considers
the time required by the peer selection to stabilize. However,
due to the variability in time of the probability of reciproca-
tion, a greedy strategy would work best during the initial
stages of the download process, where high capacity peers
are still willing to serve low and intermediate capacity peers.

This conclusion raises the legitimate question of whether
these results carry over when piece availability is considered.
Indeed, piece availability plays a crucial role, especially
during the initial phase of the download process, when the
number of pieces being exchanged by peers is scarce. Due to
the complexity of the analysis when piece availability is
taken into account, we revert in the following to a
simulation-based performance analysis.

4 DECONSTRUCTING BITTYRANT: THE SINGLE

CLIENT CASE

In the following, we carry out a simulation-based analysis
of the performance of BTyr. We decided to focus on BTyr
because it merges several greedy techniques previously
discussed in [15], [14]:

1. greedy peer set size, which implies that peer set size in
BTyr is larger than that of a BT client (this approach is
adopted also in BitThief [15]) resulting in a higher
probability of being optimistically unchoked;

2. greedy uplink allocation, which implies that the
uplink capacity of a peer is not equally split among
its active connections, but shaped according to a
greedy objective; hence, the number of active
connections varies over time.

Here, we characterize the contributions of the BTyr
building blocks to the performance achieved by a single
BTyr client in a torrent where all the other clients are BT.

4.1 Simulator Description, Methodology,
and Settings

Our work is based on the publicly available BitTorrent
simulator called GPS [22], customized for our needs. In this
environment, peers have infinite downlink capacity and a
finite uplink capacity. The uplink capacity is randomly
chosen according to the bandwidth distribution measured
in [16].

The main performance metrics we use are:

. Download time of the single client (BT, BTyr, or
BTold) in the different scenarios.

. Download time of of all peers.

. Number of pieces uploaded by the single client
during the download process.
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We decided to follow the system parameters used in [16]:
we analyze torrents of 350 peers where one initial seed shares
a file of 50 MB. We chose such a file size since we noted that the
gain of a strategic client is mainly concentrated at the beginning
of the distribution process (cf. Section 3), so BTyr should
benefit more from downloading smaller files.

In order to verify the results against different scenarios,
we have also performed experiments with bigger file size
(350 MB) and bigger torrents (500 peers) obtaining similar
results.

Peers randomly start to download the content within a
small interval of time (10 seconds) and stay as seeds in the
system once they finish downloading the content. This
scenario represents the most favorable scenario for BTyr,
since peers start downloading approximately at the same
time and they do not have any knowledge of the other peers’
bandwidth.

We carry out a comparative performance analysis of a
single peer using whether BT or BTyr client when the rest of
the torrent population use BT clients. In order to make a fair
comparison, at every change of the client of the single peer,
we leave unchanged its characteristics (bandwidth, arrival
instant), as well as the characteristics of the other peers. We
estimate the mean download time over multiple runs (if
not specified, we perform 10 runs for each experiment),
along with the confidence interval for a confidence level of
95 percent.

4.2 Impact of the Peer Set Size and Active Set Size

In this section, we build a baseline scenario in which a single,
fully fledged BTyr client operates in a torrent of BT peers. In
this case, BTyr keeps contacting the tracker in order to
increase the peer set as much as possible. A similar scenario
has been used in the experiments showed in [16], with the
difference that the torrent was composed by BTold peers. We
show the results for this case (BTyr in a torrent of BTold peers)
in Appendix B.1, which can be found on the Computer
Society Digital Library, which are coherent to the ones found
in [16].

When we consider a BTyr client in a torrent of BT peers,
the performance gain of BTyr disappears. Fig. 1 illustrates
the download time of a single BT and BTyr client for
different classes of uplink capacity. The reason is due to the
large number of active connections (active set size)
established by fast peers using BT. Their uplink capacity

is overpartitioned, hence remote peers (including the BTyr
client) receive smaller download rates as compared to the
original BTold algorithm.

The BTyr itself maintains a large number of active
connections. On the one hand, by keeping a larger number
of active connections, BTyr strives for maximizing the
chance of being reciprocated. On the other hand, since
during the initial phase of the download process the lack of
fresh pieces to serve could cause uplink capacity under-
utilization, a larger active set size helps spreading available
pieces to a large number of peers that would otherwise
remain unserved. This increases the utilization of the uplink
capacity of both the BTyr peer and its neighbors. Interest-
ingly, the greedy strategy adopted by BTyr has actually a
hidden altruistic nature. For further details, please refer to
Appendix B.2, which can be found on the Computer Society
Digital Library.

As additional test, we obstruct the peer set construction
of BTyr: the peer set size is then equal at most to 80 for
every peer in the torrent. Fig. 2 shows a slightly decreased
performances of BTyr, even if we cannot exactly quantify
this decrease, since the variation remains on the order of the
confidence interval size. A similar result can be seen in
Appendix B.1, which can be found on the Computer Society
Digital Library, where we show the same experiment in the
case of BTyr in a torrent of BTold peers.

These results indicates that the increased peer set size
may constitute one of the factors influencing download
performance.

4.3 Impact of Greedy Uplink Capacity Allocation

In the previous section, we focused on the peer set and
active set sizes. It remains to evaluate if the uplink capacity
allocation algorithm adopted by BTyr is actually able to
increase the performance. In particular, we now focus on
the interaction between a peer and its peer set and ask
whether peers tend to match with neighbors with similar
uplink capacity in variants of the BT client.

Fig. 3 shows the ECDF of the uplink capacity of the
neighbors unchoked during the whole file download by a
peer with an uplink capacity of 200 KB/s.3
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Fig. 1. Mean download time of a single client with different bandwidths
(95 percent confidence interval).

Fig. 2. Mean download time of a single client with a constrained peer set
(95 percent confidence interval).



We observe that a single BTold client unchokes a small
subset of its neighbors (the ECDF has a few well-defined
steps) and mostly reciprocates remote peers with a similar
uplink capacity. Ideally, a completely stratified system
would imply a single step ECDF function centered on the
observed peer’s uplink capacity. In practice, as discussed in
Section 3, the system requires time to converge to a stable
state, during which peers may end up cooperating with
remote peers with different uplink capacities. In contrast to
our observations on BTold, both BTyr and BT interact with
any neighbor in their peer set, irrespectively of the uplink
capacity, in a manner that resembles to a round robin
approach. Although the intuition behind the design of BTyr
was to seek and exploit for the longest possible time the
fastest peers using a clever uplink allocation algorithm, no
stable matching appears.

In order to understand if the dynamic uplink bandwidth
allocation algorithm works properly, we take a different
perspective. We neglect the effect of piece availability in our
simulations: we focus only on the exact values allocated by
the BTyr choke algorithm to remote peers, rather than on
the actual amount of data sent or received.

To this aim, we show the uplink rate assigned by the
BTyr peer to each neighbor, over time: for the observed
BTyr peer we maintain a matrix E where the element eij
represents the rate assigned to peer i at choking interval j.

Fig. 4 illustrates the matrix E for a BTyr peer k with
5,000 KB/s uplink capacity. The value of rate is visualized
using shades of gray: the darker regions indicate higher
rates. During the initial phase of the download process, peer
k allocates the same uplink rate to all its neighbors. Note
that since the initial rate for each unchoked neighbor is
15 KB/s, the BTyr peer unchokes all its neighbors.

The allocated uplink capacity varies over time, and it’s
possible to observe a specific trend: the bandwidth is initially
equally divided among the peer set; then the peer assigns an
increasing amount of bandwidth, which degenerates into a
periodic, on-off, phase. A deeper analysis shows that not all
the high capacity neighbors are detected or maintained. For
instance, in the figure, neighbors with ID 141, 153, and 199
have high bandwidth, and they are detected, but not
maintained (after 40 rounds the BTyr peer stops unchoking
them). Moreover, the periodic trend, common to all the
neighbors, represents an undesired behavior that limits the

performance of the scheme: the received rate, in fact, goes

periodically to zero for three rounds, forcing BTyr to try to be

reciprocated again by the neighbors.
The existence of a periodic behavior hints at the presence

of closed loop dynamics that the original design has not
foreseen. The limited space does not allow for a deeper
analysis from a control theory viewpoint, which we reserve
for future works. Our extensive results illustrate an
unexpected behavior of BTyr that may have an impact on
the protocol performance. As a reference, the matrix
representation of the upload algorithm in BTold is shown
in Appendix B.3, which can be found on the Computer
Society Digital Library.

5 THE MULTIPLE CLIENTS CASE

In this section, we study the behavior of a system in which
an initial population of BT clients is gradually replaced by
an increasingly larger fraction of greedy variants. This
study is motivated by the fact that if the first users adopting
a greedy variant experience improved performance in
comparison to BT, further users can be attracted to adopt
it. Since the BTyr clients have problems to interact with each
other, [16] suggests to cope with this situation using a block-
based Tit-For-That (TFT) strategy: however, a number of
issues related to the BTyr block-based TFT choke algorithm
suggest that this technique might be ineffective (cf.
Appendix C.1, which can be found on the Computer
Society Digital Library). Therefore, in the following we
analyze the performance of multiple BTyr clients that do not
implement the block-based TFT mechanism.

5.1 Increasing Fraction of Greedy Variants

We consider the implications of gradual user adoption of
BTyr clients. We ask whether it is possible to predict an
equilibrium point by which there would be no incentive for
users to adopt the BTyr variant. Hence, we focus on the
effects of an increasing adoption of BTyr clients in a swarm
composed by BT clients on users’ download times. In the
following experiments, we use the same settings described
in the previous sections, and introduce an increasing
percentage of BTyr clients.
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Fig. 3. ECDF of the upload bandwidths of the active set seen by a BT,
BTold, and BTyr client with an uplink capacity of 200 KB/s.

Fig. 4. Upload rate in the data agnostic case: snapshot for a fast BTyr
client.



Fig. 5 shows this scenario. There is no performance
improvement of clients switching from BT to BTyr, and no
equilibrium point is found: therefore, we can conclude that
BT seems to be robust against an adoption of even a small
fraction of BTyr clients. Interestingly, we note that the
increase of the percentage of BTyr clients has a negative
impact on the mean download time of the swarm: in
the next section, we dissect this issue, considering the
extreme case of a pure BTyr swarm.

In Appendix C.2, which can be found on the Computer
Society Digital Library, we study similar scenarios, where
users with BTold clients start adopting BTyr clients, or BT.

5.2 The Case of Massive Adoption

We focus on the extreme scenario of massive adoption of
BTyr. Fig. 6 illustrates the ECDF of the download times for a
torrent of all BT and BTyr clients: a glance at the median
and worst case download times indicates that a large-scale
adoption of BTyr can indeed jeopardize the content
distribution process, even with a constrained peer set size.

To understand exactly why system performance de-
grades when all peers use BTyr, we analyze the upload
capacity allocation of a fast BTyr peer in Appendix C.3,
which can be found on the Computer Society Digital
Library.

5.3 PlanetLab Experiments

We summarize the results for a set of experiments obtained
using PlanetLab [23] as a testbed. For the details of such
experiments, we refer to Appendix C.4, which can be found
on the Computer Society Digital Library.

We have reproduced a similar set of experiments shown
in Fig. 5 using real BT and BTyr software distributions. We
note that BTyr has no gain over BT. In any case, the results
confirm that BTyr clients need a favorable environment,
otherwise the gain seems unpredictable.

6 CONCLUSIONS

Recent days have observed the development of greedy
peer-to-peer clients aiming at decreasing content download
times by leveraging subtle techniques to exploit generous
clients. In this work, we focused on BitTorrent networks
and analyzed two commonly deployed greedy techniques

(implemented in BitTyrant). We showed that the BT
protocol can be misused to gain an advantage over standard
peers by building progressively larger peer sets.

We then deconstructed the other greedy building
blocks—which constitutes the BitTyrant clients—and
showed, on the one hand, some undesired behaviors, such
as periodic chokes/unchokes, that limit the performance of
the client; on the other hand the greedy uplink allocation
algorithm of BitTyrant has some positive implications on
the content distribution process, especially during its
bootstrap phase.

Furthermore, we shifted our focus from the performance
of a single BitTyrant client to the analysis of system
performance when an increasing number of such greedy
clients is adopted. Our results indicate that a gradual
“invasion” of BitTyrant clients progressively degrades the
mean download time of the swarm, suggesting that a
massive adoption of BitTyrant has to be avoided. Never-
theless, we studied this extreme scenario and our results
pinpoint at a severe performance degradation for all peers
as a consequence of instabilities of the choke algorithm of
BitTyrant, that was not designed to function in competition
with other similar clients.

The instability problems of subtle variations of the choke
algorithm highlighted by our work indicate that further
work is required to exploit the potential benefits of
alternative schemes to allocate the uplink capacity of a peer.
Along the same lines, our results show that the last version of
the legacy BitTorrent client is more robust than his pre-
decessor to BitTyrant. Moreover, we noticed a significant
performance improvement of BitTorrent due to a larger
number of active connections for high capacity peers
(cf. Appendix C.2, which can be found on the Computer
Society Digital Library). Hence, the adoption of the new
version of the choke algorithm of BitTorrent in all clients
supporting this protocol is highly recommended.
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