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MAC Design for WiFi Infrastructure Networks:
A Game-Theoretic Approach

Ilenia Tinnirello, Laura Giarré, and Giovanni Neglia

Abstract—In WiFi networks, mobile nodes compete for access-
ing a shared channel by means of a random access protocol called
Distributed Coordination Function (DCF). Although this protocol
is in principle fair, since all the stations have the same probability
to transmit on the channel, it has been shown that unfair
behaviors may emerge in actual networking scenarios because of
non-standard configurations of the nodes. Due to the proliferation
of open source drivers and programmable cards, enabling an
easy customization of the channel access policies, we propose
a game-theoretic analysis of random access schemes. We show
that even when stations are selfish, efficient equilibria conditions
can be reached when they are interested in both uploading and
downloading traffic. We explore the utilization of the Access Point
as an arbitrator for improving the global network performance.
Finally, we propose and evaluate some simple DCF extensions
for practically implementing our theoretical findings.

Index Terms—Wireless LAN, MAC design, game theory.

I. INTRODUCTION

THE problem of resource sharing in WiFi networks [1],
[2], is addressed by the Distributed Coordination Func-

tion (DCF), which is a Medium Access Control (MAC)
protocol based on the paradigm of Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA). The basic idea
of the protocol is very simple: sensing the channel before
transmitting, and waiting for a random backoff time when
the channel is sensed busy. This random delay, introduced
for preventing collisions among waiting stations, is slotted for
efficiency reason and extracted in a range called contention
window. Standard DCF assumes that the contention window
is set to a minimum value (𝐶𝑊𝑚𝑖𝑛) at the first transmission
attempt and is doubled up to a maximum value (𝐶𝑊𝑚𝑎𝑥) after
each transmission failure.

The distributed DCF protocol is in principle fair, because
the contention window settings 𝐶𝑊𝑚𝑖𝑛 and 𝐶𝑊𝑚𝑎𝑥 are
homogeneous among the stations, thus ensuring that each
node receives in the long term the same number of access
opportunities. Nevertheless, some unexpected behaviors have
been recognized as a consequence of non-standard settings
of the contention windows. The stations employing lower
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(e-mail: ilenia.tinnirello@tti.unipa.it).
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contention windows gain probabilistically a higher number
of transmission opportunities, at the expense of compliant
stations. These settings can be changed by the card manu-
facturers, as recognized in [3], or by the end users thanks to
the availability of open-source drivers.

Another problem specific to infrastructure networks is given
by the repartition between uplink and downlink resources.
Infrastructure networks are characterized by a star topology,
which connects multiple mobile nodes to a common station
called Access Point (AP). On one side, mobile stations can
upload traffic to the AP, which is connected to external
networks (e.g. to the Internet); on the other side, they can
download traffic from the external networks through the AP.
Since the AP contends as a normal station to the channel,
its channel access probability is the same of the other mobile
stations. This implies that the AP aggregated throughput, i.e.
the downlink bandwidth, is equal to the throughput perceived
by any other stations, thus resulting in a per-station downlink
bandwidth much lower than the uplink one [4]. Indeed, recent
extensions of DCF [5] (namely, the EDCA protocol) allow
the AP to set heterogeneous contention windows among
the stations to give priority to downlink throughput or to
delay-sensitive traffic. Thus, nowadays nodes can adapt their
contention windows according to the values signaled by the
AP for each traffic class. However, there is the risk to exploit
this adaptation in a selfish manner, for example by using a
contention window value of a higher priority class [6].

These considerations motivate a game theoretical analysis
of DCF, in order to propose some protocol extensions able
to cope with the resource sharing problems. The problem
can be formulated as a non cooperative game, whose players
are 𝑛 contending stations. When stations work in saturation
conditions, i.e. they always have a packet available in the
transmission buffer, DCF can be modeled as a slotted access
protocol, while station behavior can be summarized in terms
of per-slot access probability [7]. Therefore, we consider
that the strategy of a generic station 𝑖 at each time slot is
its access probability, say it 𝜏𝑖. A vector of station payoffs
(𝐽1, 𝐽2, . . . , 𝐽𝑛) can be defined according to the network and
application scenario [8]. Previous studies have mainly con-
sidered that each node utility is given by the node saturation
throughput performance [9]. In [10], [11], it has been shown
that a utility function equal to the node upload throughput
may lead to an inefficient Nash equilibrium in which stations
transmit in every channel slot (i.e. play 𝜏 = 1). This situa-
tion creates a resource collapse, because all stations transmit
simultaneously thus destroying all packet transmissions. More
complex utility functions combining upload throughput and
costs related to collision rates [10], [12], [13] or to energy
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consumptions [14], [15] lead to different equilibria, but they
appear less natural and implicitly assume that all the nodes
have the same energy constraints or collision costs. In some
cases [16], the utility function does not correspond to any
performance metric and so appears completely arbitrary.

In this paper, we show that efficient equilibria can be
naturally reached in infrastructure networks when stations are
interested in both uploading and downloading traffic. Since
the utility of each station depends not only on its throughput
but also on the AP throughput, no station is motivated to
transmit continuously. Extending our preliminary results in
[17] and in [18], we derive Nash equilibria and Pareto optimal
conditions as a function of the network scenario. We also
define a mechanism design scheme, in which the AP plays
the role of arbitrator to improve the global performance of the
network, by forcing desired equilibria conditions.

The rest of the paper is organized as follows. In Sec. I-A we
briefly review some research papers related or complementary
to ours; in Sec. II we carry the game theoretic analysis and
we find the Nash equilibria and the Pareto Optimal solutions;
in Sec. III we analyze the use of the AP for performing
some mechanism design schemes; in Sec. IV we show the
MAC scheme implementation and the performance evaluation
through simulations; finally we draw some conclusive remarks
in Sec. V.

A. Our Scenario and Related Work

In recent years, the proliferation of open-source drivers for
WiFi cards has motivated several game-theoretical analysis of
different selfish behaviors of 802.11 nodes. In particular, great
attention has been dedicated to the backoff attacks [9]-[18]
(i.e. to the presence of selfish nodes changing the contention
window value in order to increase their throughput), which are
also the focus of our work. However, our scenario differs from
previous ones because we consider an infrastructure network,
where each station is involved in bidirectional traffic flows.
This assumption introduces an intrinsic self-regulatory mech-
anism in the contention process, since each station needs to
constrain its transmission rate at least to leave space to its own
downloading traffic. Indeed, we believe that this assumption is
pretty realistic. In most cases, nodes are interested in a bilateral
information exchange. Even applications like file uploading
or downloading that look unidirectional in reality require
some signaling traffic in the opposite direction. Moreover,
in most recent P2P systems, peers interested in the same
file are incentivized to barter their chunks, so that each peer
downloads and uploads the file at the same time.

We also assume that the stations work with saturated
transmission buffers. This is quite natural if we think about
large data transfers and it does not necessarily imply that
a station should try to transmit at the highest possible rate.
In fact in our scenario the station is also interested to its
download rate.

Therefore, in this paper we define a new utility function able
to simultaneously account for a generic bidirectional traffic
scenario and a desired uplink/downlink bandwidth repartition.
When such a ratio goes to infinity, we asymptotically recover
the case when a node is only interested in its upload rate [10].

Moreover, in an infrastructure network, the Access Point
(AP) is a central element that can try to implement fair
resources repartition and punish misbehaving nodes when
needed. In particular, although we prove that stations’ interest
in bidirectional traffic is sufficient to lead to efficient equi-
libria, we also suggest how to use the AP for dealing with
the presence of stations interested in upload traffic only. The
upload traffic scenario has been largely analyzed in literature
and our solution is derived by the approach introduced in [10]
(based on a MAC-layer artificial throughput control) that has
been adapted to an infrastructure network. Specifically, while
[10] proposes a distributed jamming mechanism for destroying
transmissions of too greedy stations, here we centrally control
the unidirectional upload flows, by selectively dropping the
ACK frames of greedy stations at the AP. Obviously, different
punishment schemes can be implemented at different layers.
In [9], [19] the authors describe two driver-level approaches,
called CRISP and SPELL, based on software modules to
be installed at each contending node, for piloting the MAC
settings of the cards according to some monitored parameters.
Stations are discouraged from installing different driver mod-
ules because their bandwidth share is asymptotically inferior
to what they would receive playing CRISP or SPELL. In
[20] both routing-layer and application-layer punishments are
considered. At the routing layer, each node can stop the
forwarding of traffic packets sent by stations recognized as
selfish, while at the application layer it is possible to shape or
deny the traffic incoming from selfish nodes. Similarly, rather
than dropping the ACK frames, the AP can stop forwarding the
traffic sent by selfish nodes to the application layer or to the
wired network. However, since we are assuming that stations
work in saturation conditions, we do not model the interaction
between the packet generation process at higher layers and
the MAC-layer queue. Therefore, we limit our analysis to
MAC-layer traffic control, because in the current framework
the higher layer discard process cannot have effects on the
MAC-layer queues and contention process.

Finally, while our work is focused on analyzing and/or cor-
recting selfish node behaviors, some other related work [21],
[22] has addressed the issue of how to identify a misbehaving
wireless node. These papers consider different misbehaviors,
including those aiming to increase the upload rate and those
aiming to increase the download rate. They present DOMINO,
a software to be installed in or near the Access Point, to
detect and identify greedy stations. It is important to note that
DOMINO does not address the problem of how to control or
punish the identified greedy stations. Similarly to DOMINO,
DREAM [23] is a solution to detect and contrast a specific
attack (in this sense it is a malicious behavior rather than
a selfish one): a host could maliciously modify the protocol
timeout mechanism (e.g., by changing the SIFS parameter in
802.11) and cause MAC frames to be dropped at well-behaved
nodes. Both these works are orthogonal to our purposes and
could be integrated in our framework.

II. CONTENTION-BASED CHANNEL ACCESS: A GAME

THEORETIC ANALYSIS

We assume that all the stations try permanently to transmit
on the channel because their transmission queues are never
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Fig. 1. An example of DCF operation and equivalent slotted model.

empty, i.e. they work in saturation conditions. We have verified
that non-saturated stations affect the performance of saturated
stations only marginally and regardless of their contention
windows. When all stations are saturated, it has been shown
[24] that DCF can be accurately approximated as a persistent
slotted access protocol, because packet transmissions can be
originated only at given time instants.

Figure 1 shows an example of DCF as a slotted protocol.
After a busy time, stations A and B defer their transmissions
by extracting a random slotted delay (respectively, 4 and
8 slots). Since the timer of station A expires first, station
A acquires the right to transmit on the channel. The next
transmission, which results in a collision, is performed again
after an integer number of backoff slots from the end of the
previous channel activity. Therefore, the channel time can be
divided into slots of uneven duration delimited by potential
transmission instants. In a generic channel slot, each station
𝑖 has approximately a fixed probability 𝜏𝑖 to transmit, which
depends on the average backoff values.

A. Station strategies

Let 𝑛 be the number of saturated contending stations. We
assume that each station 𝑖 is rational, and can arbitrarily
choose its channel access probability 𝜏𝑖 in [0, 1]. This choice
can be readily implemented by tuning opportunistically the
minimum and the maximum values of the contention windows.
By observing that 𝜏𝑖 = 1/(1 + 𝐸[𝑊 ]/2), where 𝐸[𝑊 ] is the
average contention window used by station, a solution is to set
𝐶𝑊 𝑖

𝑚𝑖𝑛 = 𝐶𝑊 𝑖
𝑚𝑎𝑥 = 2/𝜏𝑖−21. The set of all the strategies in

the network is then [0, 1]𝑛. We define as outcome of the game
a specific set of strategies taken by the players, then a vector
𝝉 = (𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑛) ∈ [0, 1]𝑛. We call it a homogeneous
outcome whenever all the stations play the same strategy, i.e.
𝝉 = (𝜏, 𝜏, ...𝜏).

Performance perceived by a given station 𝑖 not only depends
on the probability 𝜏𝑖 to access the channel, but also on the
probability that no other station transmits in the same slot.
Therefore, from the point of view of station 𝑖, the vector
strategy 𝝉 can be represented by the couple of values (𝜏𝑖, 𝑝𝑖),
where 𝑝𝑖 = 1 − ∏

𝑗 ∕=𝑖(1 − 𝜏𝑗), the probability that at least
another station transmits, summarizes the interactions with
all the other mobile stations. In the presence of downlink
traffic we also assume, unless otherwise specified, that the AP

1Obviously, this solution introduces some quantization effects on the actual
𝜏𝑖 values, since the contention window can assume only integer values. A
discussion about these effects is provided in [26].

contends for the channel as a legacy DCF station with satu-
rated downlink traffic. Thus, the overall collision probability
suffered by station 𝑖 results to be 1−(1−𝑝𝑖)(1−𝜏𝐴𝑃 ), where
𝜏𝐴𝑃 is the channel access probability employed by the AP.
Since the AP is a legacy station, its transmission probability is
not chosen by the AP, but is function of the perceived collision
probability 𝑝𝐴𝑃 , 𝜏𝐴𝑃 = 𝑓(𝑝𝐴𝑃 ). The function 𝑓() has been
derived in [7]:

𝜏 = 𝑓(𝑝) = 1
1+𝐸[𝑊 ]/2 =⎧⎨

⎩
2(1−𝑝𝑅+1)

1−𝑝𝑅+1+(1−𝑝)∑𝑅
𝑖=0 𝑝

𝑖𝑊 (𝑖)
0 ≤ 𝑝 < 1

2(𝑅+1)

𝑅+1+
∑

𝑅
𝑖=0𝑊 (𝑖)

𝑝 = 1

(1)

where 𝑅 is the retry limit employed in the network (i.e. the
maximum number of times the station tries to retransmit
a packet as consequence of collisions) and 𝑊 (𝑖) is the
contention window at the 𝑖-th retry stage (i.e. 𝑊 (𝑖) =
min{2𝑖𝐶𝑊𝑚𝑖𝑛, 𝐶𝑊𝑚𝑎𝑥}). We can evaluate the AP collision
probability as a function of the vector strategy 𝝉 or as a
function of a generic pair (𝜏𝑖, 𝑝𝑖):

𝑝𝐴𝑃 (𝝉 ) = 1−
𝑛∏
𝑖=1

(1− 𝜏𝑖) = 1− (1− 𝑝𝑖)(1− 𝜏𝑖)

B. Station Utility

According to the slotted channel model, the random access
process can be described as a sequence of slots resulting in
a successful transmission (when only one station accesses the
channel), in a collision (when two or more stations access
the channel), or in an idle slot (when no station accesses the
channel). By observing that each slot boundary represents a
regeneration instant [25] for the access process, the throughput
of each station can be readily evaluated as the ratio between
the average number of bits transmitted in each slot and the
average duration of each slot [24].

In our study we consider that the AP could allocate a
different downlink throughput to each station by implementing
a specific scheduling mechanism, as described in Sec. II-D.
For now on we consider that the scheduling rule is given and
we denote by 𝑥𝑖 the fraction of the AP’s throughput (𝑆𝐴𝑃 )
given to station 𝑖 (clearly

∑
𝑖 𝑥𝑖 = 1). We can express the

uplink throughput 𝑆𝑖𝑢 and the downlink throughput 𝑆𝑖𝑑 for the
𝑖-th station as [24]:

𝑆𝑖𝑢(𝜏𝑖, 𝑝𝑖) =
𝜏𝑖(1− 𝑝𝑖)(1 − 𝜏𝐴𝑃 )𝑃

𝑃𝑖𝑑𝑙𝑒𝜎 + [1− 𝑃𝑖𝑑𝑙𝑒]𝑇
(2)

𝑆𝑖𝑑(𝜏𝑖, 𝑝𝑖) = 𝑥𝑖𝑆𝐴𝑃 (𝑝𝐴𝑃 ) = 𝑥𝑖
𝑓(𝑝𝐴𝑃 )(1 − 𝑝𝐴𝑃 )𝑃

𝑃𝑖𝑑𝑙𝑒𝜎 + [1− 𝑃𝑖𝑑𝑙𝑒]𝑇
(3)

where 𝑃 is the frame payload which is assumed to be fixed, 𝜎
and 𝑇 are, respectively, the empty and the busy slot duration2,
and 𝑃𝑖𝑑𝑙𝑒 is the probability that neither the stations, nor the
AP transmit on the channel, i.e. 𝑃𝑖𝑑𝑙𝑒 = (1− 𝑝𝐴𝑃 )(1− 𝜏𝐴𝑃 ).

We define the utility function 𝐽𝑖 for the mobile station 𝑖 as:

𝐽𝑖 = min{𝑆𝑖𝑢, 𝑘𝑖𝑆𝑖𝑑} (4)

2We are implicitly considering a basic access scheme, with
EIFS=ACK Timeout+DIFS [1], which corresponds to have a fixed busy slot
duration in both the cases of successful transmission and collision.
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Fig. 2. Utility of a given station 𝑖, for different 𝑝𝑖 values, as a function of
the strategy 𝜏𝑖 (𝑘 = 1).

The rationale of this definition is the assumption that the
station applications require bandwidth on both directions. The
coefficient 𝑘𝑖 ∈ (0,∞) takes into account the desired ratio
between the uplink and the downlink throughput required by
station 𝑖 and we call it the application requirement at station
𝑖. If 𝑘𝑖 = 1, station 𝑖 requires the same throughput in both
directions. The limit case 𝑘𝑖 = 0 corresponds to a user 𝑖 only
interested in the downloading rate 𝑆𝑖𝑑. In this case it is trivial to
determine the user’s dominant strategy, that is not to transmit
at all in order to avoid any collision with the AP. For this
reason, in this paper we exclude the case 𝑘𝑖 = 0. Conversely,
the limit case 𝑘𝑖 = ∞ corresponds to a user 𝑖 only interested in
the uploading rate 𝑆𝑖𝑢 (as assumed in most previous literature).
Apart from the mechanism design analysis, we briefly treat
this case, since most limit results have been discussed in [10],
[11]. When all the coefficients 𝑘𝑖 are equal to a fixed value
𝑘, we talk about uniform application requirements.

Figure 2 plots the utility of a given station 𝑖, in the case
of uniform application requirements with 𝑘 = 1, 802.11b
physical (PHY) layer, 𝑃 = 1500 bytes, a data rate equal to
11 Mbps, and an acknowledgment rate of 1 Mbps. In such a
scenario, by including physical preambles, acknowledgment
transmissions, MAC headers and interframe times, the 𝑇
duration is equal to 1667 𝜇𝑠. Different network conditions,
summarized by different values of the 𝑝𝑖 probability, have been
considered. The collision probability 𝑝𝑖 takes into account
only the competing mobile stations, so that the actual collision
probability is given by 1− (1−𝑝𝑖)(1−𝜏𝐴𝑃 ). From the figure,
it is evident that, for each 𝑝𝑖, the utility is maximized for
a given best response value (e.g. about 0.01 for 𝑝 = 0.15),
which slightly decreases as 𝑝𝑖 grows. For uniform application
requirements, we consider that the AP equally shares its
throughput among the contending stations (i.e. 𝑥𝑖 = 1/𝑛 ∀𝑖).
In this case, it is useful to define the single variable functions

𝑆ℎ𝑜𝑚𝑢 (𝜏) = 𝑆𝑢(𝜏, 1− (1 − 𝜏)𝑛−1)
𝑆ℎ𝑜𝑚𝑑 (𝜏) = 1

𝑛𝑆𝐴𝑃 (1− (1 − 𝜏)𝑛)
(5)

representing, respectively, the uplink and downlink through-
put perceived by each station in the case of homogeneous
outcomes (𝝉 ∣𝜏𝑖 = 𝜏, ∀𝑖).
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Fig. 3. Station utility in the case of homogeneous access probability
employed by all the stations and different 𝑘 values.

Figure 3 plots the utility of a given station in the case
of homogeneous outcomes for 𝑛 = 2 and 𝑛 = 10, and for
different uniform 𝑘 values. In these curves 𝑝𝑖 = 1−(1−𝜏)𝑛−1

is not fixed, because the strategy changes are not unilateral.
The optimal strategy, which maximizes the station utility, is a
function of both 𝑛 and 𝑘.

C. Nash Equilibria

We are interested in characterizing Nash Equilibria (NE) of
our game model where stations achieve a non-null utility. The
inefficient equilibria in which all stations achieve an utility
value equal to 0 can be easily found by observing that:

Remark 2.1: In general, station 𝑖 utility is a function of the
whole set of strategies (𝝉 ), but it is constant and equal to 0 if
a) 𝑝𝑖 = 1, i.e. if at least one of the other players is transmitting
with probability 1 (∃𝑗 ∕= 𝑖 ∣ 𝜏𝑗 = 1), or if b) 𝜏𝑖 = 0. We also
observe that the AP access probability 𝜏𝐴𝑃 depends on 𝜏𝑖
and 𝑝𝑖 according to (1) and cannot be equal to 1 for standard
contention window values.

Proposition 2.1: The vectors of strategies 𝝉 , such that
∃ 𝑗, 𝑙 ∈ 1, 2, ⋅ ⋅ ⋅𝑛 ∣ 𝜏𝑗 = 1, 𝜏𝑙 = 1 are NE of the distributed
access game in which all stations achieve an utility value that
is constant and equals 0.

Proof: The result is an immediate consequence of Re-
mark 2.1. If there are at least two stations transmitting with
probability 1, then the channel is entirely wasted because of
collisions and 𝑆𝑖𝑢 = 𝑆𝑖𝑑 = 0, ∀𝑖. In these conditions, 𝐽𝑖 = 0 ∀𝑖
and stations are not motivated to change their strategies.

The following remark will be useful for characterizing more
efficient NE.

Remark 2.2: Consider a generic station 𝑖 and the collision
probability 𝑝𝑖 ∈ (0, 1) suffered because of the other sta-
tion strategies. By derivation, it can be easily proved that
𝑆𝑖𝑑(𝜏𝑖, 𝑝𝑖) is a monotonic decreasing function of 𝜏𝑖, starting
from 𝑆𝑖𝑑(0, 𝑝𝑖) > 0, and that 𝑆𝑖𝑢(𝜏𝑖, 𝑝𝑖) is a monotonic
increasing function of 𝜏𝑖, starting from 𝑆𝑖𝑢(0, 𝑝𝑖) = 0.

Let us denote a best response strategy of a station 𝑖 as
𝜏
(𝑏𝑟)
𝑖 . For 𝑘𝑖 = ∞, the station utility function is equal only

to 𝑆𝑖𝑢(𝜏𝑖, 𝑝𝑖). From Remarks 2.1 and 2.2, it results that the
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utility is maximized for 𝜏
(𝑏𝑟)
𝑖 = 1 when 𝑝𝑖 < 1 (then there is

a unique best response), and it is constant and equal to 0 when
𝑝𝑖 = 1 (then any strategy is the best response). For 𝑘𝑖 ∕= ∞
and 𝑝𝑖 < 1, from Remark 2.2 we can state that the utility
𝐽𝑖 is maximized for 𝜏

(𝑏𝑟)
𝑖 ∈ (0, 1) such that 𝑆𝑖𝑢(𝜏

(𝑏𝑟)
𝑖 , 𝑝𝑖) =

𝑘𝑖𝑆
𝑖
𝑑(𝜏

(𝑏𝑟)
𝑖 , 𝑝𝑖). It follows that, for 𝑝𝑖 < 1, 𝜏 (𝑏𝑟)𝑖 is the solution

of the following implicit equation:

𝜏
(𝑏𝑟)
𝑖 = 𝑘𝑖𝑥𝑖𝜏𝐴𝑃

1−(1−𝑘𝑖𝑥𝑖)𝜏𝐴𝑃
=

𝑘𝑖𝑥𝑖𝑓
(
1−(1−𝑝𝑖)

(
1−𝜏 (𝑏𝑟)

𝑖

))

1−(1−𝑘𝑖𝑥𝑖)𝑓
(
1−(1−𝑝𝑖)

(
1−𝜏 (𝑏𝑟)

𝑖

)) (6)

The previous equation has a single solution 𝜏∗𝑖 in the range
(0, 1). In fact, the left side 𝑙(𝜏

(𝑏𝑟)
𝑖 ) of (6) is a continuous

strictly increasing function of 𝜏
(𝑏𝑟)
𝑖 with values in [0, 1].

For 𝑝𝑖 ∕= 1, the right side 𝑟(𝜏
(𝑏𝑟)
𝑖 ) is a continuous strictly

decreasing function with values in the same interval (we are
going to show it below), and with 𝑟(0) > 𝑙(0) = 0 and
𝑟(1) < 𝑙(1) = 1. Then, there is necessarily a unique solution
for 𝑝𝑖 ∕= 1. In order to check our statement about the function
on the right side of (6), we can express it as the composition
of three functions ℎ(𝑦) = 𝑘𝑖𝑥𝑖𝑦/(1 − (1 − 𝑘𝑖𝑥𝑖)𝑦), 𝑓(𝑥),
𝑔(𝜏

(𝑏𝑟)
𝑖 ) = 1−(1−𝑝𝑖)(1−𝜏

(𝑏𝑟)
𝑖 ). Now 𝑔() is strictly increasing

for 𝑝𝑖 ∕= 1 and has value in [0, 1]. 𝑓() is strictly decreasing
and has value in [0, 1] (this is evident if we remind that 𝑓(𝑥)
is the probability to access the channel for a legacy station that
experience a collision probability 𝑥). ℎ() is strictly increasing
in the interval [0, 1] (for all the possible values of 𝑘𝑖𝑥𝑖). Then,
the composition ℎ∘𝑓 ∘𝑔 is strictly decreasing for 𝑝𝑖 ∕= 1. The
solution 𝜏∗𝑖 of (6) can be found numerically in a few fixed
point iterations.

Note that, as originally proved in literature and revisited
in [8], if there are stations with only uplink traffic flows, the
NE of the distributed access game with non-null utility values
are all and only the vector of strategies 𝝉 , such that ∃! 𝑖 ∈
{1, 2, ⋅ ⋅ ⋅𝑛} ∣ 𝜏𝑖 = 1 and 𝑘𝑖 = ∞. In this particular case our
general utility function leads to the same results of [10], [11].
Conversely, when 𝑘𝑖 ∕= ∞ ∀𝑖, the next proposition shows that
there is a non trivial NE where all players obtain a non null
utility.

Proposition 2.2: For a given vector 𝒌 of application re-
quirements (𝑘1, 𝑘2, ⋅ ⋅ ⋅ 𝑘𝑛) in (0,∞)𝑛, and a given vector of
downlink throughput coefficients (𝑥1, 𝑥2, ⋅ ⋅ ⋅𝑥𝑛), it exists a
unique NE 𝝉 with non-null utility values.

Proof: We already know that all the vectors of strategies
such that at least two stations transmit with probability 1 are
NE with zero utility. Moreover, an outcome with only one sta-
tion, say it 𝑖, transmitting with 𝜏𝑖 = 1 cannot be a NE because
the station would find convenient to unilaterally reduce 𝜏𝑖 to
increase its downloading rate. Then we can conclude that a NE
with non-null utility values can only exist for 𝜏 ∈ [0, 1)𝑛, or
equivalently 𝑝𝑗 < 1 for all 𝑗, so in what follows we consider
this case. A NE is an outcome 𝝉∗ of mutual best responses,
that can be expressed by (6), being that 𝑝𝑖 < 1 for all 𝑖, i.e.
an outcome such that for each 𝑖, 𝜏∗𝑖 = 𝑘𝑖𝑥𝑖𝜏𝐴𝑃

1−(1−𝑘𝑖𝑥𝑖)𝜏𝐴𝑃
, with

𝜏𝐴𝑃 = 𝑓(1 −∏𝑛
𝑖=1(1 − 𝜏∗𝑖 )). Although the above equations

characterize the best responses only for 𝝉 ∈ [0, 1)𝑛, we
will first look for solutions with 𝝉 ∈ [0, 1]𝑛, knowing that
solutions with one transmission probability equal to 1 are
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Fig. 4. Geometric interpretation of the Nash equilibrium for heterogeneous
application requirements.

not NE. The conditions can be geometrically represented in
the 𝑛 + 1 dimensional hypercube [0, 1]𝑛+1, where the first
𝑛 dimensions are the strategies 𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑛 and the last
dimension is the AP access probability 𝜏𝐴𝑃 . We denote with
𝜽 = (𝜏1, 𝜏2, ⋅ ⋅ ⋅ 𝜏𝑛, 𝜏𝐴𝑃 ) a generic vector in this hypercube.
Moreover, 0𝑚 and 1𝑚 is the 𝑚-dimensional vectors whose
elements are respectively all equal to 0 and to 1.

A solution of the set of equations, if any, corresponds to
the intersection of the 𝑛-dimensional hypersurface 𝑆 iden-
tified by the equation 𝜏𝐴𝑃 = 𝑓(1 − ∏𝑛

𝑖=1(1 − 𝜏𝑖)) with
(𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑛) ∈ [0, 1]𝑛, and the one-dimensional curve 𝐶,
identified by the set of 𝑛 equations 𝜏𝑖 =

𝑘𝑖𝑥𝑖𝜏𝐴𝑃

1−(1−𝑘𝑖𝑥𝑖)𝜏𝐴𝑃
with

𝜏𝐴𝑃 ∈ [0, 1].
We observe that 𝑆 is continuous, and it divides the hy-

percube in three regions: the surface 𝑆 itself, the region 𝑅𝑏

of the points “below the surface”, i.e. 𝑅𝑏 = {𝜽∣𝜏𝐴𝑃 <
𝑓(1−∏𝑛

𝑖=1(1−𝜏𝑖))}, and the region 𝑅𝑎 of the points “above”
it, i.e. 𝑅𝑎 = {𝜽∣𝜏𝐴𝑃 > 𝑓(1 −∏𝑛

𝑖=1(1 − 𝜏𝑖))}. Note that the
point 0𝑛+1 belongs to 𝑅𝑏, because 𝑓(𝑝𝐴𝑃 (0

𝑛)) > 0, and
the point 1𝑛+1 belongs to 𝑅𝑎 because 𝑓(𝑝𝐴𝑃 (1

𝑛)) < 1. The
one-dimensional curve is also continuous and it connects 0𝑛+1

(for 𝜏𝐴𝑃 = 0) and 1𝑛+1 (for 𝜏𝐴𝑃 = 1), then it necessarily
intersects the surface. This proves that it exists an intersection
point.

Moreover, it is easy to check that, for each 𝑖, ∂𝜏𝐴𝑃

∂𝜏𝑖
∣𝝉∈𝑆 < 0

and ∂𝜏𝑖
∂𝜏𝐴𝑃

∣𝝉∈𝐶 > 0. Then, there must be a unique intersection
point.

Finally, we observe that this intersection point needs to
belong to (0, 1)𝑛+1, because the sign of the derivatives for the
points in 𝐶 implies that all the points of 𝐶 lie in (0, 1)𝑛+1

but 0𝑛+1 and 1𝑛+1, neither of which could be the intersection
point because we have shown that they do not belong to 𝑆.
Then, the intersection point is indeed a NE and moreover the
corresponding nodes’ utilities are all non-null.

Figure 4 shows some examples of equilibrium conditions
in terms of surface and parametric curve intersections for two
stations (hence in a 3-dimensional space) and for different 𝑘1
and 𝑘2 values.

D. Downlink Scheduling Scheme

For evaluating the ratio 𝑥𝑖 of the downlink throughput to
be assigned to each station, the AP can employ different
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policies. If the AP is not aware of the application requirements
of each station, a possible solution is to equally share the
downlink throughput among the stations (i.e. 𝑥𝑖 = 1/𝑛 ∀𝑖).
Under this policy, since each station 𝑖 tries to get an uplink
throughput equal to 𝑘𝑖𝑆

𝑖
𝑑 = 𝑘𝑖/𝑛𝑆𝐴𝑃 , the total uplink and

downlink throughput perceived by each station at the NE is
(1 + 𝑘𝑖)/𝑛𝑆𝐴𝑃 . This implies that stations requiring large 𝑘𝑖
values will consume a large fraction of the network resources.

Whenever the AP is able to estimate the application re-
quirement of each station (by monitoring the ratio between the
uplink and downlink throughput perceived by each station), it
can implement a different downlink scheduling policy devised
to improve the network fairness. For example, by imposing
that the total per-node bandwidth 𝑆𝑖𝑢 + 𝑆𝑖𝑑 = (1 + 𝑘𝑖)𝑥𝑖𝑆𝐴𝑃
is equal for each station, with the constraint

∑
𝑖 𝑥𝑖 = 1, it

results:

𝑥𝑖 =
1

𝑘𝑖+1∑𝑛
𝑗=1

1
𝑘𝑗+1

(7)

When multiple stations have the same application require-
ments, we can group these stations into applications classes
and represent each class 𝑖 with a single 𝑘𝑖 value. Stations
belonging to the same classes will also receive the same
downlink ratio 𝑥𝑖.

Note that the first scheduling policy guarantees a uniform
downlink bandwidth for all the stations, while the second
application-aware scheduling policy equalizes the total per-
station bandwidth, thus resulting in heterogeneous utilities.
Therefore, we could argue that a different utility definition,
based on the total per-station bandwidth, could be considered.
However, such a definition does not capture the bidirectional
nature of the considered applications and could lead to situa-
tions in which the uplink or downlink bandwidth is null.

E. Social utility

In this section, we try to identify desirable outcomes from a
global point of view. A natural choice is to look at outcomes
that maximize a social utility function, such as the minimum
utility 𝐽𝑆(𝝉 ) perceived in the network: 𝐽𝑆(𝝉 ) = min

𝑖=1⋅⋅⋅𝑛
𝐽𝑖.

This global utility is often referred to as social utility3. The
following remark will be useful for such a characterization.

Remark 2.3: The uplink throughput 𝑆ℎ𝑜𝑚𝑢 (𝜏) given in (5)
and perceived in the case of homogeneous outcomes is a
non-monotonic function in 𝜏 , with a single maximum value
𝑆ℎ𝑜𝑚𝑢 (𝜏𝑥), for 𝜏𝑥 ∈ (0, 1).

Proposition 2.3: The social utility is maximized for a
unique homogeneous outcome (𝜏 ′, 𝜏 ′, ⋅ ⋅ ⋅ , 𝜏 ′) and such out-
come is Pareto Optimal.

Proof: From the utility definition, we have that the
minimum utility perceived in the network is given by 𝐽𝑆(𝝉 ) =
min

𝑖=1,⋅⋅⋅𝑛
{min{𝑆𝑖𝑢, 𝑥𝑖𝑘𝑖𝑆𝐴𝑃 }}. Let us consider 𝑚 such that

𝑥𝑚𝑘𝑚 ≤ 𝑥𝑖𝑘𝑖 for all 𝑖. It is evident that the social
utility can be expressed in a simpler way as 𝐽𝑆(𝝉 ) =

3In this application scenario, it does not seem that is meaningful to consider
as global utility the sum of all the utilities. Consider for example that for
𝑘𝑖 = ∞ for all 𝑖, according to this definition, the optimal social outcome
would be the extremely unfair one where a single node accesses the channel
with probability 1 and all the others do not transmit.

min{ min
𝑖=1,⋅⋅⋅𝑛

{𝑆𝑖𝑢}, 𝑥𝑚𝑘𝑚𝑆𝐴𝑃 }. Therefore, the minimum util-

ity is due to the minimum uplink throughput among all the
stations or to the downlink throughput of station 𝑚.

Let us consider an outcome maximizing the social utility
such that min

𝑖=1,⋅⋅⋅𝑛
{𝑆𝑖𝑢} < 𝑥𝑚𝑘𝑚𝑆𝐴𝑃 . We prove that this out-

come has to be homogeneous. In fact let us consider, without
loss of generality, a non-homogeneous ordered vector 𝝉 with
0 ≤ 𝜏1 = ⋅ ⋅ ⋅ 𝜏𝑗 < 𝜏𝑗+1 ≤ ⋅ ⋅ ⋅ 𝜏𝑛 ≤ 1, then 𝑆ℎ𝑢(𝜏ℎ, 𝑝ℎ) =
min𝑖 𝑆

𝑖
𝑢(𝜏𝑖, 𝑝𝑖) for ℎ = 1, 2, ⋅ ⋅ ⋅ , 𝑗. Let 𝜏 ′𝑗+1 be a new strategy

for the (𝑗 + 1)-th station, such that 𝜏 ′𝑗+1 = 𝜏𝑗 . For the
new outcome (𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑗 , 𝜏 ′𝑗+1 ⋅ ⋅ ⋅ 𝜏𝑛), the social utility is still
determined by the minimum uplink throughput that is now
the throughput perceived by stations from 1 to 𝑗 + 1. This
throughput is higher than the previous one, since 𝑆𝑖𝑢(𝜏𝑖, 𝑝𝑖) is
monotonic decreasing in 𝜏𝑗+1 for 𝑖 ∕= 𝑗 + 1. Then the new
outcome has strictly higher social utility, this proves that an
outcome has to be homogeneous in order to maximize the
minimum uplink throughput.

Let us then consider the other case, i.e. when an
outcome 𝝉 maximizing the social utility is such that
min

𝑖=1,⋅⋅⋅𝑛
{𝑆𝑖𝑢} ≥ 𝑥𝑚𝑘𝑚𝑆𝐴𝑃 . It has to be 𝑆𝑚𝑢 = 𝑥𝑚𝑘𝑚𝑆𝐴𝑃 ,

because if it were 𝑆𝑚𝑢 > 𝑥𝑚𝑘𝑚𝑆𝐴𝑃 , then station 𝑚 could
increase its downlink throughput and (then increase the social
utility) by reducing 𝜏𝑚. Then it has to be 𝑆𝑖𝑢 ≥ 𝑆𝑚𝑢 for
all 𝑖, i.e. 𝜏𝑖 ≥ 𝜏𝑚 for all 𝑖. In particular all the 𝜏𝑖 have
to be equal, because otherwise we could reduce the largest
access probability to 𝜏𝑚 and improve the social utility. The
conclusion is that also in this case an outcome maximizing
the social utility has to be homogeneous.

Now we prove that there is a unique outcome maximizing
the social utility. In fact 𝐽𝑆((𝜏, 𝜏, ⋅ ⋅ ⋅ , 𝜏)) has a unique maxi-
mum because 𝑆ℎ𝑜𝑚𝑢 has a unique maximum (see Remark 2.3)
and 𝑆ℎ𝑜𝑚𝐴𝑃 is non-increasing. We denote the outcome maxi-
mizing the social utility 𝝉 ′ = (𝜏 ′, 𝜏 ′ ⋅ ⋅ ⋅ , 𝜏 ′).

Finally, we prove the Pareto optimality. We recall that a
Pareto optimal outcome is one such that no one could be made
better off by changing the vector of strategies without making
someone else worse off. Now, if we take any outcome different
from 𝝉 ′ the corresponding social utility is strictly smaller,
this means that there is at least one station whose utility has
decreased.

It is easy to check when the social utility is limited by the
uplink throughput or by the downlink throughput:

Remark 2.4: Being 𝜏∗ the value for which 𝑆ℎ𝑜𝑚𝑢 (𝜏) =
𝑥𝑚𝑘𝑚𝑆ℎ𝑜𝑚𝐴𝑃 (𝜏), and 𝜏𝑥 the homogeneous strategy defined
in Remark 2.3, the optimal social outcome 𝝉 ′ is such that
𝜏 ′ = 𝜏∗ if 𝜏∗ ≤ 𝜏𝑥, or 𝜏 ′ = 𝜏𝑥 when 𝜏𝑥 < 𝜏∗.
As an example, Figure 3 plots 𝐽𝑆(𝝉 ) =
min{𝑆ℎ𝑜𝑚𝑢 (𝜏), 𝑥𝑚𝑘𝑚𝑆ℎ𝑜𝑚𝐴𝑃 (𝜏)} for 𝑥𝑚 = 1/𝑛 and different
𝑘𝑚 = 𝑘 values, showing cases where the maximum utility
value 𝐽𝑆 is limited by the uplink throughput (i.e. 𝜏∗ > 𝜏𝑥)
or by the downlink one (i.e. 𝜏∗ ≤ 𝜏𝑥). Note that the
intersection between the curves corresponding to 𝑆ℎ𝑜𝑚𝑢 (𝜏)
and 𝑥𝑚𝑘𝑚𝑆ℎ𝑜𝑚𝐴𝑃 (𝜏) depends on the scheduling policy and on
the application requirements. When 𝑥𝑖 = 1/𝑛 ∀𝑖, or when 𝑥𝑖
is given by (7), the index of the station perceiving the lowest
utility at the NE is that of the station with the smallest 𝑘𝑖
value, i.e. 𝑚 = argmin𝑖 𝑘𝑖.
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It is interesting to note that for 𝑘 = ∞ the optimal social
outcome 𝝉 ′ coincides with the Nash bargaining solution of the
game that is studied in [10], [11]. Such solution corresponds
to maximize

∏
𝑖=1,⋅⋅⋅ ,𝑛 𝑆𝑖𝑢, and the homogeneous outcome is

the one maximizing each 𝑆𝑖𝑢. For 𝑘 = ∞, this is equivalent
to maximize the defined social utility. This is an unexpected
link between two different mathematical formulations.

An immediate consequence of Remark 2.4 when 𝑥𝑖𝑘𝑖 is
constant is the following result:

Corollary 2.4: If 𝑥𝑖𝑘𝑖 is constant for all 𝑖 and the solution
𝜏∗ of (6) for 𝑝𝑖 = 1 − (1 − 𝜏∗)𝑛−1 is lower or equal to 𝜏𝑥,
then the NE (𝜏∗, 𝜏∗, ⋅ ⋅ ⋅ 𝜏∗) is Pareto optimal.

Proof: When 𝑥𝑖𝑘𝑖 is constant for all 𝑖, 𝜏∗ is also the
strategy at the (homogeneous) NE identified in Prop. 2.2, and
if 𝜏∗ < 𝜏𝑥 then 𝜏 ′ = 𝜏∗.

Figure 3 shows that the limit condition 𝜏∗ = 𝜏𝑥 is approx-
imately reached for 𝑘𝑚 = 20 in the case of 𝑛 = 2, and for
𝑘𝑚 = 11 in the case of 𝑛 = 10. For smaller 𝑘𝑚 values, the
homogeneous NE 𝝉∗ is Pareto optimal. For larger 𝑘𝑚 values,
including the unidirectional traffic case 𝑘𝑚 = ∞, the Pareto
optimal outcome 𝝉 ′ is not an equilibrium point and the NE
𝝉∗ gives poor performance (i.e. performance much worse than
𝐽ℎ𝑜𝑚𝑆 (𝜏 ′)).

Note that Prop. 2.1 implies that the price of anarchy4 is
infinite. In fact the global utility at the NE described by
Prop. 2.1 is 0, because no user can transmit.

III. CHANNEL ACCESS MECHANISM DESIGN

In this section, we explore the possibility of using the
Access Point to change the 𝑆𝑖𝑑 or 𝑆𝑖𝑢 functions, in order
to force desired equilibrium outcomes. Indeed, since the AP
plays the role of gateway to external networks, it can also play
the role of arbitrator for optimizing the global performance of
its access network.

A. Tuning of the AP channel access probability

In order to improve the downlink short-term fairness and
the overall network performance, we can use the AP channel
access probability 𝜏𝐴𝑃 as a tuning parameter. In this case,
𝜏𝐴𝑃 does not depend on 𝝉 according to (1), but it is equal
to a fixed value 𝑐, which can be tuned by the AP. The best
response (6) for each station 𝑖 is equal to

𝜏+𝑖 =
𝑘𝑖𝑥𝑖 ⋅ 𝑐

1− (1 − 𝑘𝑖𝑥𝑖)𝑐
(8)

and the NE in (0, 1)𝑛 becomes the intersection between an
hyperplane 𝜏𝐴𝑃 = 𝑐 and the parametric curve 𝐶 identified
by the best response equations. Let 𝐽𝑁𝐸

𝑖 (𝑐) and 𝑆𝑁𝐸
𝐴𝑃 (𝑐)

be respectively, the station 𝑖 utility and the AP throughput
perceived at the NE for each different 𝑐 value selected by the
AP. When 𝑥𝑖 ∕= 0 ∀𝑖, the utility value 𝐽𝑁𝐸

𝑖 of each station is
proportional to the AP throughput. Therefore, all the utilities
can be maximized by maximizing the same function 𝑆𝑁𝐸

𝐴𝑃 :

max
𝑐

𝐽𝑁𝐸
𝑖 (𝑐) = 𝑘𝑖𝑥𝑖 ⋅max

𝑐
𝑆𝑁𝐸
𝐴𝑃 (𝑐).

4Remind that the price of anarchy is defined as the ratio between the optimal
global utility and the global utility at the worst Nash Equilibrium.
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Fig. 5. Per-station total bandwidth, for different application classes (𝑘1=1,
𝑘2 = 1, 2, 10). Comparison between approximated maximum values (empty
boxes) and values perceived under a legacy AP (black boxes).

Figure 5 shows the effects of the 𝑐 tuning on the total band-
width perceived by 𝑛1 and 𝑛2 contending stations belonging
to two different application classes, under the application-
aware scheduling policy (7). The figure refers to a scenario
in which one station requires an uplink/downlink throughput
ratio 𝑘1 = 1, and all 𝑛2 stations require a 𝑘2 ratio equal to 1,
2 or 10 (as indicated in the figure legend). The packet size has
been set to 1500 bytes, with an 802.11b PHY and a data rate
equal to 11 Mbps. The figure enlightens that the per-station
bandwidth is maximized for a given 𝑐 = 𝜏𝐴𝑃 𝑜

value. For
example, for 𝑛1 = 1, 𝑛2 = 10 and 𝑘2 = 10, a maximum
bandwidth of 0.57 Mbps can be obtained when 𝑐 is set to
0.02. For comparison, the figure also plots some black points,
corresponding to the bandwidth received at the NE under a
legacy AP. Despite the fact that the curves have a large flat
region, in which the throughput is close to the optimal one, the
bandwidth obtained under a legacy AP can be much lower than
the maximum value (e.g. 0.46 Mbps for the previous 𝑛1 = 1,
𝑛2 = 10, and 𝑘2 = 10 case).

In order to tune the 𝑐 parameter maximizing the function
𝑆𝑁𝐸
𝐴𝑃 (𝑐), it is convenient to express each channel access

probability 𝜏+𝑗 as a function of the channel access probability
experienced by a reference station 𝑖 at the NE:

𝜏+𝑗 =
𝜏+𝑖

𝜏+𝑖 + 𝑘𝑖𝑥𝑖

𝑘𝑗𝑥𝑗
(1− 𝜏+𝑖 )

,

where we have inverted the best response expression given
in (8) for the reference station 𝑖, and substituted 𝑐 =

𝜏+
𝑖

𝜏+
𝑖 +𝑘𝑖𝑥𝑖(1−𝜏+

𝑖 )
in the best response equation of any other

station 𝑗 ∕= 𝑖. It results:

𝑆𝑁𝐸
𝐴𝑃 (𝑐) = 𝑆𝑁𝐸

𝐴𝑃 (𝑐(𝜏+𝑖 ))

= 1
𝑘𝑖𝑥𝑖

𝜏+
𝑖 (1−𝜏+

𝑖 )𝑛𝑃

𝑇
[
1+𝜏+

𝑖 ( 1
𝑘𝑖𝑥𝑖

−1)
]∏

𝑛
𝑗=1

[
1+𝜏+

𝑖 (
𝑘𝑗𝑥𝑗
𝑘𝑖𝑥𝑖

−1)
]
−(1−𝜏+

𝑖 )𝑛+1(𝑇−𝜎)
(9)

By deriving (9), it can be shown that (for 𝑘𝑗 ∕= 0 ∀𝑗)
the function 𝑆𝑁𝐸

𝐴𝑃 has a unique maximum in 𝜏𝑖𝑜 ∈ (0, 1).
Such desired maximum can be obtained by setting a specific
𝜏𝐴𝑃𝑜 = 𝑐(𝜏𝑖𝑜) value. Although a closed form expression for
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such a maximum is not trivial, we verified that an excellent
approximation for 𝑘𝑗 > 1 ∀𝑗 is given by:

𝜏𝐴𝑃𝑜 =
1

(1 +
∑

𝑗 𝑘𝑗𝑥𝑗)
√

𝑇/2𝜎
(10)

which leads to 𝜏𝑖𝑜 = 𝑘𝑖𝑥𝑖

(1+
∑

𝑗 𝑘𝑗𝑥𝑗)
√
𝑇/2𝜎−(1−𝑘𝑖𝑥𝑖)

. The ap-

proximation is based on the result shown in [7], according
to which the optimal channel access probability for a net-
work with 𝑛 competing stations is given by 1

𝑛
√
𝑇/2𝜎

. In our

scenario, at the NE outcome, the AP behaves as a single
contending station, while all the others require an uplink
throughput equal to 𝑘𝑗𝑥𝑗 times the AP one.

Figure 6 plots some examples of the NE utilities 𝐽𝑁𝐸
1

perceived by station 1, competing with 𝑛2 = 5 stations whose
application requirement is 𝑘2 = 1, for 𝑃 = 1500 bytes and
different 𝑘1 values. The figure has been obtained in the case
of an 802.11b PHY at 11 Mbps and an application-aware
scheduling policy. Although this mechanism design scheme
cannot be performed when it exists 𝑘𝑖 = ∞ (since in this case
station 𝑖 is not interested in the download traffic and 𝑐 cannot
be used as a tuning parameter for 𝜏+𝑖 ), Figure 6 also plots the
limit curve obtained when 𝑘1 → ∞. In both Figures 5 and 6
the bandwidth perceived when 𝑐 is tuned to the approximated
value (10) is indicated by the empty boxes. The points are
quite close to the actual maximum values (as we also verified
numerically).

We observe that this scheme could also be presented as
a Stackelberg game with the AP as leader and the users as
followers. In this case the AP would also be a player, with
the same set of strategies, but with a different utility function
(the social utility). The resulting Stackelberg equilibrium cor-
responds to the one obtained by maximizing (9), i.e. to our
desired NE.

B. ACK suppression

When a contending station 𝑖 is not interested in download-
ing, the mechanism design based only on the 𝜏𝐴𝑃 tuning is
not effective for obtaining efficient NE, because in this case
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Fig. 7. Station utility in the case of ACK suppression, for n=10, k=∞ and
different 𝛼 values.

station 𝑖 will maximize its utility by playing 𝜏
(𝑏𝑟)
𝑖 = 1 and all

the other stations will receive a null utility.
A solution for controlling the resource repartition in in-

frastructure networks with stations not requiring downlink
throughput is adding a selective discard of the ACK transmis-
sions at the AP side. Since the AP is the common receiver for
all stations, suppressing the ACKs at the AP side corresponds
to triggering ACK timeouts at the station side, which are
interpreted as collisions. Therefore, ACK dropping can act as a
punishment strategy devised to limit the uplink throughput of
too aggressive stations. We propose the following threshold
scheme: if a generic station 𝑖 has an access probability 𝜏𝑖
higher than a given value 𝛾, the AP drops an ACK frame
with probability min{𝛼(𝜏𝑖 − 𝛾), 1}.

In this case, for station 𝑖 with 𝑘𝑖 = ∞ the utility function
𝐽𝑖 is given by the uplink throughput and can be expressed as:

𝐽𝑖(𝜏𝑖, 𝑝𝑖) =

⎧⎨
⎩

𝜏𝑖(1−𝑝𝑖)(1−𝜏𝐴𝑃 )
𝑃𝑖𝑑𝑙𝑒𝜎+[1−𝑃𝑖𝑑𝑙𝑒]𝑇

0 < 𝜏𝑖 < 𝛾
𝜏𝑖(1−𝑝𝑖)(1−𝜏𝐴𝑃 )[1−𝛼(𝜏𝑖−𝛾)]

𝑃𝑖𝑑𝑙𝑒𝜎+[1−𝑃𝑖𝑑𝑙𝑒]𝑇
𝛾 ≤ 𝜏𝑖 < 𝛾 + 1/𝛼

0 𝛾 + 1/𝛼 ≤ 𝜏𝑖 ≤ 1
(11)

where we recall that 𝑃𝑖𝑑𝑙𝑒 = (1 − 𝜏𝑖)(1 − 𝑝𝑖)(1 − 𝜏𝐴𝑃 ) and
𝜏𝐴𝑃 can be zero if 𝑘𝑖 = ∞ for all 𝑖. According to the previous
expression, for 𝜏𝑖 < 𝛾 the utility function 𝐽𝑖 is an increasing
function of 𝜏𝑖, while for 𝜏𝑖 ≥ 𝛾 its slope depends on the
𝛼 setting. By selecting an 𝛼 value which corresponds to a
negative derivative of 𝐽𝑖 with respect to 𝜏𝑖, for 𝛾 < 𝜏𝑖 <

𝛾 + 1/𝛼, the utility function is maximized for 𝜏
(𝑏𝑟)
𝑖 = 𝛾.

We observe that this approach has some similarities with
that proposed in [10], [11]. There, the authors consider that a
penalty mechanism should be deployed in a distributed way
through jamming, and they show that a simple linear control
is sufficient to lead the system to work at a desired operation
point (as we are going to show for our ACK suppression
scheme). We believe that our solution is more appealing from
a practical point of view. In fact, a distributed jamming would
require that all WiFi cards support this mechanism. On the
contrary our ACK suppression scheme requires only some
changes to the AP and WiFi cards do not need any change.
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Figure 7 plots the station utility perceived in the case of
10 stations requiring uplink traffic only (i.e. 𝑘 = ∞) under
the ACK suppression scheme, for different 𝛼 values. For 𝛼 =
0, the utility is an increasing function of the channel access
probability and the best response of station 𝑖 is 𝜏

(𝑏𝑟)
𝑖 = 1. For

𝛼 > 0, the utility function is maximized for 𝜏 (𝑏𝑟)𝑖 < 1. Such a
maximum corresponds to 𝛾 for large enough values of 𝛼 (in
the figure, 𝛼 = 80).

Let the station be ordered for decreasing 𝑘𝑖 values and let
𝑛𝑢 be the number of stations with only upload traffic (i.e.
𝑘𝑖 = ∞). We can then prove the following result.

Proposition 3.1: The outcome 𝝉 such that 𝜏𝑖 = 𝛾 for
𝑖 ∈ [1, 𝑛𝑢] and 𝜏𝑖 = 𝑘𝑖𝑥𝑖𝜏𝐴𝑃 /(1 − (1 − 𝑘𝑖𝑥𝑖)𝜏𝐴𝑃 ) for
𝑖 ∈ [𝑛𝑢 + 1, 𝑛] is a Nash equilibrium of the game, when
the ACK suppression scheme indicated above is implemented
with:

𝛼 ≥ 1

𝛾

(
1+𝛾

(1−𝛾)𝑛𝑢−1(1−𝜏𝐴𝑃 )
∏𝑛

𝑖=𝑛𝑢+1
(1−𝜏𝑗 )(𝑇−𝜎)

𝑇−(1−𝛾)𝑛𝑢−1(1−𝜏𝐴𝑃 )
∏𝑛

𝑖=𝑛𝑢+1
(1−𝜏𝑗 )(𝑇−𝜎)

)

(12)
Moreover, when 𝑘𝑖 = ∞ ∀𝑖 and 𝛾 ≤ 𝜏𝑥 (the value in
Remark 2.3) the NE is also Pareto Optimal.

Proof: First we observe that 𝝉 is a NE. Indeed, whatever
player 𝑖 we consider with 𝑖 ≤ 𝑛𝑢, Remark 2.1 guarantees
that for 𝜏𝑖 < 𝛾 𝐽𝑖 decreases as 𝜏𝑖 decreases. For 𝛾 < 𝜏𝑖 <
𝛾 + 1/𝛼 inequality (12) guarantees that 𝐽𝑖 decreases as 𝜏𝑖
increases until it reaches the value 0. For 𝜏 > 𝛾 + 1/𝛼, the
punishment strategy implies 𝐽𝑖 = 0. Then deviating from 𝝉
is not convenient for player 𝑖. For each other station 𝑗 with
𝑗 > 𝑛𝑢, 𝜏𝑗 = 𝑘𝑗𝑥𝑗𝜏𝐴𝑃 /(1 − (1 − 𝑘𝑗𝑥𝑗)𝜏𝐴𝑃 ) is the station
best response (8), which is fixed for a given 𝜏𝐴𝑃 setting. Then,
also for these stations it is not convenient deviating from 𝝉 .

Second, when 𝑛𝑢 = 𝑛, the NE is 𝜸 = (𝛾, 𝛾, . . . 𝛾).
Considering the subset of outcomes [0, 𝛾]𝑛, we can reason
as in Prop. 2.3 and show that the social utility (defined as the
minimum of stations’ utilities as in Sec. II-E) is maximized
in this subset at a unique homogeneous outcome. Moreover,
for every outcome in [0, 1]𝑛 − [0, 𝛾]𝑛, there is at least one
station with 𝜏𝑖 > 𝛾 and this station gets a smaller utility
than at the NE 𝜸. We can then conclude that there is a
unique homogeneous outcome maximizing the social utility
and that it lies in [0, 𝛾]𝑛. Considering the value 𝜏𝑥 introduced
in Remark 2.3, if 𝜏𝑥 < 𝛾 the homogeneous outcome is
(𝜏𝑥, 𝜏𝑥, . . . , 𝜏𝑥), while if 𝜏𝑥 >= 𝛾 it is 𝜸. Then, under the
assumed hypotheses, 𝜸 maximizes the social utility and is
Pareto optimal.

Note that the utility perceived at the NE point depends on
the settings of both 𝜏𝐴𝑃 and 𝛾. Under the scheduling policy
given in (7), the per-station bandwidth maximization given in
(10) can be written as:

𝜏𝐴𝑃𝑜 =

∑𝑛
𝑗=𝑛𝑢+1

1
(𝑘𝑗+1)

𝑛
√

𝑇/2𝜎
(13)

which corresponds to a per-station best response

𝜏𝑖𝑜 =

𝑘𝑖
𝑘𝑖+1

𝑛
√

𝑇/2𝜎 + 1−∑𝑛
𝑗=𝑛𝑢+1

1
𝑘𝑗+1

(14)

Since for the stations employing 𝑘𝑖 = ∞ the uplink
bandwidth is equal to the total perceived bandwidth (i.e.
𝑘𝑖/(𝑘𝑖 + 1) → 1), a possible tuning strategy (maximizing
the per-station total bandwidth) is tuning 𝜏𝐴𝑃 to (13) and
𝛾 to 1

𝑛
√
𝑇/2𝜎+1−∑

𝑛
𝑗=𝑛𝑢+1

1
𝑘𝑗+1

. When 𝑛𝑢 = 𝑛, the previous

expression becomes 𝛾 = 1

𝑛
√
𝑇/2𝜎+1

, which is similar to the

approximation proposed in [7].

IV. GAME-BASED MAC SCHEME: IMPLEMENTATION AND

EVALUATION

On the basis of the results discussed in the previous sec-
tions, we propose some simple DCF extensions devised to i)
enable each contending station to dynamically tune its channel
access probability according to a best response strategy; ii)
enable the AP to act as a game designer to induce some
desired equilibrium conditions. Being 𝑛 the number of stations
associated to the AP, we assume that the AP maintains 𝑛
independent downlink queues. For each station 𝑖, uplink and
downlink transmission queues are always saturated, apart from
the case 𝑘𝑖 = ∞ when the 𝑖-th downlink queue is empty.
We also assume that each station is aware of its application
requirements 𝑘𝑖, while the AP is aware of the number of
associated stations 𝑛 involved in the contention process.

A. Estimators at the Stations and AP side

In actual networks, for implementing a best response strat-
egy, each station needs to estimate the AP channel access
probability 𝜏𝐴𝑃 . Moreover, for implementing the mechanism
design and scheduling policies described in the previous sec-
tions, the AP needs to estimate the channel access probability
𝜏𝑖 employed by each station and the per-station application
requirements 𝑘𝑖

5. All these parameters can be estimated on
the basis of channel observations.

Considering the slotted channel model due to saturation
conditions, a channel observation corresponds to the channel
outcome observed into a given slot. Such outcome is given
by an idle slot when no station transmits, by a successful slot
when a single station transmits, by a collision slot when two
or more stations transmit simultaneously. In order to perform
run-time estimators, the channel observations can be grouped
in observation intervals at which new measurement samples
are available. We express the measurement intervals in terms
of an integer number 𝐵 of channel slots. Since the slot size
is uneven (because successful slots and collisions last for a 𝑇
time, while idle slots last only for 𝜎), the actual time required
for a new measurement sample is not fixed.

In each interval, a monitoring station cannot count the
total number of transmissions performed by the access point,
because in a collision slot it is not possible to detect the
identity of the stations involved in the collision. Therefore,
we implemented an access probability estimator based on
counting the number of idle slots 𝑠 and the number of
successful transmissions 𝑡𝑥𝐴𝑃 performed the AP. Let 𝑃𝑠𝐴𝑃

the probability to have a successful AP transmission on

5Although stations could in principle notify their application requirements,
we prefer to consider an independent estimate carried out by the AP for
avoiding malicious false notifications.
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the channel. Since 𝑃𝑠𝐴𝑃 = 𝜏𝐴𝑃 (1 − 𝑝𝐴𝑃 ) = 𝜏𝐴𝑃

1−𝜏𝐴𝑃
𝑃𝑖𝑑𝑙𝑒,

we have that the actual 𝜏𝐴𝑃 value can be expressed as
𝑃𝑠𝐴𝑃 /(𝑃𝑠𝐴𝑃 + 𝑃𝑖𝑑𝑙𝑒) and a 𝜏𝑚𝐴𝑃 (𝑡) measure in the 𝑡-th time
interval can be evaluated as 𝑡𝑥𝐴𝑃 (𝑡)

𝑡𝑥𝐴𝑃 (𝑡)+𝑠(𝑡) . Similarly, during
the observation interval 𝐵, the AP can separately count the
successful transmissions 𝑡𝑥𝑖 performed by each station 𝑖, for
measuring 𝜏𝑚𝑖 (𝑡) as 𝑡𝑥𝑖(𝑡)

𝑡𝑥𝑖(𝑡)+𝑠(𝑡)
. Being 𝑡𝑥𝑖𝐴𝑃 the number of

successful transmission performed by the AP for station 𝑖, a
measurement of the downlink ratio 𝑥𝑚𝑖 (𝑡) is simply given by
𝑡𝑥𝑖𝐴𝑃 /𝑡𝑥𝐴𝑃 .

As far as concerns the 𝑘𝑖 estimates, when the 𝑖-th downlink
queue is not-empty, the AP can perform an estimation of the
application requirements by considering that at the NE 𝑘𝑖 is

equal to the throughput ratio
𝑆𝑖
𝑢𝑝

𝑆𝑖
𝑑𝑜𝑤𝑛

. In the assumption of
fixed packet size, such a ratio can be expressed as the ratio
between the successful transmissions 𝑡𝑥𝑖 performed by station
𝑖 and the successful transmissions 𝑡𝑥𝑖𝐴𝑃 performed by the
AP for station 𝑖, i.e. 𝑘𝑚𝑖 (𝑡) = 𝑡𝑥𝑖(𝑡)/𝑡𝑥

𝑖
𝐴𝑃 (𝑡). Obviously, the

number 𝑡𝑥𝑖𝐴𝑃 depends on the scheduling policy implemented
at the AP side, which in turns might depend on the current
𝑘𝑖 estimates. It follows that also the 𝑥𝑖 coefficients might
be time-dependent and updated at each estimation interval
𝐵. When the 𝑖-th downlink queue is empty, the AP can
immediately understand that the station application does not
require downlink bandwidth, i.e. 𝑘𝑖 = ∞.

Finally, the estimates 𝜏𝐴𝑃 , 𝑥𝑖, 𝑘𝑖, and 𝜏𝑖 are performed by
smoothing the measurements 𝜏𝑚𝐴𝑃 , 𝑥𝑚𝑖 , 𝑘𝑚𝑖 and 𝜏𝑚𝑖 with a
filter. In our simulations, we used for all the parameters first-
order autoregressive filters with a memory coefficient equal to
0.75.

B. Best response performance under legacy AP

As discussed in Sec. II, in the case of unidirectional upload
traffic, the best response strategy leads to very poor throughput
performance under legacy AP. Therefore, in this section we
consider 𝑘𝑖 ∕= ∞, ∀𝑖.

A generic station 𝑖 may implement a best response strategy,
on the basis of the previous estimators and (6), by setting its
channel access probability to:

𝜏 (𝑏𝑟)(𝑡+ 1) =
𝑘𝑖𝑥𝑖(𝑡)𝜏𝐴𝑃 (𝑡)

1− (1− 𝑘𝑖𝑥̂𝑖(𝑡))𝜏𝐴𝑃 (𝑡).
(15)

Although an analysis of the estimate noise effects on the
system and of equilibrium performance is also possible (as
described in [26]), we have evaluated the effectiveness of the
presented scheme (approximating the performance of an ideal
best response in which all stations exactly know the 𝜏𝐴𝑃
parameters and 𝑥𝑖 is evaluated with the actual 𝑘𝑖 values)
by means of simulations. We have extended the custom-
made C++ simulation platform used in [7], for a 802.11g
physical rate, with the data rate set to 6Mbps. The contention
windows used by the AP have been set to the legacy values
𝐶𝑊𝑚𝑖𝑛 = 16 and 𝐶𝑊𝑚𝑎𝑥 = 1024. All the simulation results
have been obtained by averaging 10 different simulation
experiments lasting 10s, leading to a confidence interval lower
than 3%. Unless otherwise specified, the measurement interval
𝐵 has been set to 500 channel slots.
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Fig. 8. Aggregated throughput for various number of nodes. Comparison of
our scheme (𝑘 = 1, 𝑘 = 0.5) with standard DCF.

Figure 8 compares the behavior of our scheme with that
of standard DCF. Each point refers to a network scenario
in which 𝑛 stations (indicated in the 𝑥 axis), with uniform
application requirements (𝑘𝑖 = 𝑘 ∀𝑖), compete for the channel
with a legacy AP. The aggregated uplink throughput (i.e. the
sum of the throughput perceived by all the mobile stations)
and 𝑘 times the aggregated downlink throughput, (i.e. the
AP throughput) are indicated by the 𝑦 axis, respectively
by white and black points. From the figure, it is evident
that, as the number of contending stations increases, standard
DCF gives very poor performance in terms of the downlink
throughput. Conversely, for 𝑘 = 1 our scheme is able to
equalize uplink and downlink throughput for each 𝑛 even
in congested network conditions. Moreover, it is also able
to maintain the overall network throughput (i.e. the sum
of the aggregated uplink and downlink throughput) almost
independent of the network load. For example, for 𝑛 = 20
the sum of the uplink and downlink throughput is about 3.8
Mbps for standard DCF and about 5 Mbps for our scheme.
The figure also shows our scheme effectiveness for different
application requirements (i.e. 𝑘 = 0.5). The figure clearly
visualizes that

∑
𝑖 𝑆

𝑖
𝑢 = 𝑘𝑛𝑆𝑖𝑑, as expected. Note also that our

scheme is different from a classical prioritization scheme, such
as the schemes defined in the EDCA extensions [5]. Indeed,
by giving lower contention windows to the AP (i.e. a higher
EDCA priority class to the AP), it is not possible to perform
a desired resource repartition between uplink and downlink
which is also load independent.

We have also checked our scheme performance when ap-
plication requirements are time-varying, by running several
simulation experiments in which the 𝑘𝑖 coefficients dynam-
ically change during the simulation time. Figure 9 shows
a simulation example lasting 750 seconds, in which two
contending stations (station 1 and station 2) have initially the
same application requirements 𝑘1 = 𝑘2 = 1, and station 2
changes temporarily these requirements to 𝑘2 = 5 in the time
interval [250s, 500s]. In the figure we plot the uplink and
downlink throughput perceived by each station (labeled as
Sta1 and Sta2) under the application-aware scheduling policy,
when the AP estimates the 𝑘𝑖 coefficients according to the
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Fig. 9. Effects of best response strategies on the downlink and uplink
throughput of two stations employing 𝑘1 = 1 in [0s, 750s], 𝑘2 = 1 in
[0s, 250s] ∪ [500s, 750s], and 𝑘2 = 5 in [250s, 500s].

estimators introduced in (IV-A) (in the interval [0s, 500s])
and when the AP knows the exact 𝑘𝑖 values (in the interval
[500s, 750s]). Since we initialized our estimation process with
𝑘1(0) = 𝑘2(0) = 0, it also follows that the scheduling starts
with 𝑥1 = 𝑥2 = 1/2, i.e. by equally sharing the downlink
throughput among the stations. When the 𝑘2 value changes to
5, station 2 downlink throughtput is reduced after a transient
phase of a few tens of seconds, in order to provide an equal
aggregated bandwidth to both the stations. When 𝑘2 comes
back to 1, the downlink throughput is again equally shared
among the stations and the transient phase is much quicker
because in this case we assumed that the AP knows the exact
𝑘𝑖 values. Note that the throughput fluctuations in the range
[0s, 250s] and [500s, 750s] are comparable, thus proving that
the noise on the 𝑘𝑖 estimates does not critically affect the
network bandwidth repartition.

C. Best response performance under AP mechanism design

The implementation of the optimal tuning of the 𝜏𝐴𝑃
probability can be easily supported in actual networks, by
using the approximated optimal value given in (10). Such
a value depends only on the 𝑘𝑖 estimates, which we have
previously introduced to enable application-aware scheduling
policies.

Figure 10 plots the overall bandwidth (i.e.
∑𝑛

𝑖=1 𝑆
𝑖
𝑢 + 𝑆𝑖𝑑)

available in the network under the application-aware schedul-
ing policy, in case of two application classes (𝑘1 = 1
and 𝑘2 = 10), as a function of the per-class number of
stations 𝑛1 = 𝑛2. The figure compares the performance
obtained when the AP behaves as a legacy station and when
the AP adaptively tunes its 𝜏𝐴𝑃 parameter according to the
approximated optimal value given in (10). For 𝑛1 = 𝑛2 = 20,
the bandwidth available under legacy AP is 10% lower than
the one available in case of adaptive 𝜏𝐴𝑃 tuning. Indeed, as
evident in Figure 5, there is a wide range of 𝜏𝐴𝑃 values which
provide performance quite close to the optimal one.

As far as concerns the implementation of the ACK suppres-
sion scheme (to be considered when ∃𝑘𝑖 = ∞), it is necessary
to configure: i) the 𝛾 threshold, which depends on the 𝑘𝑖
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estimates and on the known parameter 𝑛; ii) the 𝛼 coefficient,
which is simply related to 𝛾 and to the PHY parameters 𝑇
and 𝜎; iii) the per-station channel access probability estimates.
All these configurations may rely on the estimators already
introduced in Sec. IV-A. The implementation of the ACK
suppression scheme at the AP side has important implications
for preventing users and card manufacturers from using non-
standard contention window values. As proved in [3], currently
there is an impressive proliferation of cheating cards, i.e. cards
which implement lower contention windows to gain advantage
during the contention with other cards.

Figure 11 shows a simulation example (reproducing one of
the realistic scenarios documented in [3]), in which a cheater
card with a contention window equal to 8 compete with one
legacy card. Both the stations are interested in upload traffic
only. The figure refers to a simulation experiment lasting 105
seconds, after a transient phase of 10 seconds. Despite of
the temporal fluctuations, it is evident that the cheating card
obtains a throughput (dashed line) higher than two times the
throughput (bold line) perceived by the legacy card. Also,
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Figure 11 plots the throughput performance of the two stations
when the AP implement the ACK suppression scheme. In this
case, the cheater is no longer motivated to use a channel
access probability higher than the contending station, since
its throughput is maximized by tuning the channel access
probability to the threshold value 1/(2

√
𝑇/2𝜎 + 1) (i.e.

implementing a best response strategy). The figure shows the
throughput performance of the two stations implementing the
best response (bold and dashed lines labeled as best response),
and the throughput degradation perceived by the cheating
station when it keeps using a contention window equal to 8.
The ACK suppression scheme works properly, even if the AP
relies on the channel access probability estimators, rather than
on the actual values.

In order to assess the effectiveness of the ACK suppression
implementation as the number of competing stations grows,
Figure 12 compares the aggregated network throughput of our
scheme with the standard DCF one, for different 𝑛 values.
Each point refers to a network scenario in which 𝑛 stations
(indicated in the 𝑥 axis) are aware of the ACK suppression risk
and employ a consequent best response strategy. Although the
variance of the 𝜏𝑖 estimators could imply that in some intervals
a probability estimate passes the threshold value (i.e. there
is a non null probability of unnecessary ACK dropping), the
figure shows that the aggregated throughput is almost constant
regardless of the number of competing stations. This behavior
is very different from standard DCF, whose efficiency depends
on the number of contending stations and degrades for high
load conditions. Therefore, our scheme is able not only to
discourage cheating card behaviors, but also to optimize the
global network performance.

V. CONCLUSIONS

The proliferation of MAC-level programmable WiFi cards
can potentially create serious coexistence problems, since
some stations could implement greedy access policies to
increase their bandwidth share at the expenses of compliant
users. For this reason, we have proposed a game-theoretic
analysis of persistent access schemes for WiFi infrastructure
networks, in order to characterize equilibria conditions and to

design disincentive mechanisms to prevent selfish inefficient
behaviors. We have proved that, when stations are interested
in both uploading and downloading traffic, it exists a Nash
Equilibrium where all the stations reach a non-null utility.
Moreover, we have also explored the utilization of the Ac-
cess Point as an arbitrator for improving the global network
performance. Specifically, we have proposed two different
solutions. When all stations require downlink traffic, the AP
can tune its channel access probability to control the stations
best responses and optimizing the overall network capacity.
When some stations are interested in uplink traffic only, the
AP can selectively discard the acknowledgments of too greedy
stations.

We have then proposed some extensions to standard DCF,
in order to estimate the network status, in terms of per-station
application requirements and channel access probability, and
emulate an access scheme based on best response strategies
and AP mechanism design. We proved the effectiveness of our
solutions in controlling the resource sharing for WiFi networks
in various network scenarios. Currently, we are investigating
how to prototype our solutions in actual WiFi cards and APs.
While the estimate and best response modules can be simply
implemented at the driver level, the ACK dropping scheme
requires a hardware/firmware update.
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from the Universitá di Bologna, Italy, in 1986 and
1992, respectively. She has held visiting positions
at the Department of Mechanical Engineering of
the University of California at Santa Barbara and
at the Laboratory for Information and Decision
Systems, MIT, Boston. Since 1993 she was Assistant
Professor at Politecnico di Torino, Turin, Italy and
since 1998 she has been Associate Professor at the
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