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a b s t r a c t

Weconsider a variant of the graph searching games thatmodels the routing reconfiguration
problem in WDM networks. In the digraph processing game, a team of agents aims at
processing, or clearing, the vertices of a digraph D. We are interested in two different
measures: (1) the total number of agents used, and (2) the total number of vertices occupied
by an agent during the processing of D. These measures, respectively, correspond to the
maximum number of simultaneous connections interrupted and to the total number of
interruptions during a routing reconfiguration in a WDM network.

Previous works have studied the problem of independently minimizing each of these
parameters. In particular, the corresponding minimization problems are APX-hard, and
the first one is known not to be in APX. In this paper, we give several complexity results
and study tradeoffs between these conflicting objectives. In particular, we show that
minimizing one of these parameters while the other is constrained is NP-complete. Then,
we prove that there exist some digraphs for which minimizing one of these objectives
arbitrarily impairs the quality of the solution for the other one. We show that such bad
tradeoffs may happen even for a basic class of digraphs. On the other hand, we exhibit
classes of graphs forwhich good tradeoffs canbe achieved.We finally detail the relationship
between this game and the routing reconfiguration problem. In particular, we prove that
any instance of the processing game, i.e. any digraph, corresponds to an instance of the
routing reconfiguration problem.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the digraph processing game, analogous to graph searching games [12]. This game aims at
processing, or clearing, the vertices of a contaminated directed graphD. For this, we use a set of agentswhich are sequentially
put and removed from the vertices of D. We are interested in two different measures and their tradeoffs: the minimum
number of agents required to clear D and the minimum number of vertices that must be covered by an agent. The digraph
processing game has been introduced in [6] for its relationship with the routing reconfiguration problem in Wavelength
DivisionMultiplexing (WDM)networks. In this context, the goal is to reroute some connections that are established between
pairs of nodes in a communication network, which can lead to interruptions of service. Each instance of this problem may
be represented by a directed graph, called its dependency digraph, such that the reconfiguration problem is equivalent to
the clearing of the dependency digraph. More precisely, the two measures presented above, respectively, correspond to the
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Fig. 1. Different process strategies for a symmetric digraph D.

maximum number of simultaneous disruptions, and to the total number of requests disrupted during the rerouting of the
connections. The equivalence between these two problems is detailed in Section 5.

The digraph processing game is defined by the three following operations (or rules), which are very similar to the ones
defining the node search number [2,9,12,15,17] of a graph, and whose goal is to process, or to clear, all the vertices of a
digraph D.
R1 Put an agent at a vertex v of D.
R2 Remove an agent from a vertex v of D if all its outneighbors are either processed or occupied by an agent, and process v.
R3 Process an unoccupied vertex v of D if all its outneighbors are either processed or occupied by an agent.

A digraph whose vertices have all been processed is said to be processed. A sequence of such operations resulting in
processing all vertices of D is called a process strategy. Note that, during a process strategy, an agent that has been removed
from a (processed) vertex can be reused. The number of agents used by a strategy on a digraph D is the maximum number
of agents present at the same time in D during the process strategy. A vertex is covered during a strategy if it is occupied by
an agent at some step of the process strategy.

Fig. 1 illustrates two process strategies for a symmetric digraph D of 7 vertices. The strategy depicted in Fig. 1(a) first
puts an agent at vertex x1 (rule R1), which let y1 (rule R3) be processed. A second agent is then put at r (rule R1) allowing the
vertex x1 to be processed, and the agent on it to be removed (rule R2). The procedure goes on iteratively, until all the vertices
are processed. The depicted strategy uses 2 agents and covers 4 vertices. Another process strategy is depicted in Fig. 1(b)
that uses 3 agents and covers 3 vertices. Note that this latter strategy consists in putting agents at the vertices of a feedback
vertex set1 of minimum size.

1 A set F of nodes of D is a feedback vertex set if the removal of all nodes in F makes D acyclic.
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Clearly, to process a digraph D, it is sufficient to put an agent at every vertex of a feedback vertex set F of D (rule R1),
then the vertices of V (D) \ F can be sequentially processed using rule R3, and finally the vertices of F can be processed
and all agents can be removed (rule R2). In particular, a Directed Acyclic Graph (DAG) can be processed using 0 agent and
thus covering no vertices. Indeed, to process a DAG, it is sufficient to process sequentially its vertices starting from the
leaves (rule R3). Note that any process strategy for a digraph D must cover all the vertices of a feedback vertex set of D
(not necessarily simultaneously). Indeed, otherwise there exists a cycle such that none of its vertices are covered during
the strategy. Therefore, its vertices cannot be processed since neither rule R1 nor rule R3 can be applied. Obviously, for any
process strategy, the number of covered vertices is always at least the number of agents used.

Theminimumnumber of agents required to process a digraphD (without constraint on the number of covered vertices) is
called the process number [6,7,5], while the minimum number of covered vertices required to process D (without constraint
on the number of agents) equals the size of a minimum feedback vertex set (MFVS) of D. In this paper, we are interested in
tradeoffs between theminimumnumber of agents used by a process strategy and theminimumnumber of vertices it covers.

Note that an empirical study of this tradeoff has been conducted in [21] using a heuristic algorithm designed for
determining process strategies with minimum number of agents. The conclusion of this empirical study is nonsurprisingly
that the number of covered vertices could be far from the MFVS.

1.1. Definitions and previous results

Let D be an n-node directed graph. In the following, a (p, q)-process strategy for D denotes a process strategy for D using
at most p agents and covering at most q vertices. When the number of covered vertices is not constrained, we write (p, ∞)-
process strategy. Similarly, when the number of agents is not constrained, we write (∞, q)-process strategy.

Process number. The problem of finding the process number of a digraph D, was introduced in [6] as a metric of the routing
reconfiguration problem (see Section 5). Formally, we have the following.

Definition 1. The process number of D, denoted by pn(D), is the smallest p such that there exists a (p, ∞)-process strategy
for D.

For instance, the digraph D of Fig. 1 satisfies pn(D) = 2. Indeed, Fig. 1(a) describes a process strategy using 2 agents,
and it is easy to check that there is no process strategy using at most 1 agent. Digraphs whose process number is equal to
0 or 1 can easily be identified, as they respectively correspond to acyclic digraphs, and to graphs whose strongly connected
components have a feedback vertex set of size at most 1 (which can be checked in linear time [7]). In [7], a polynomial
algorithm to recognize digraphs whose process number is equal to 2 is also given. However the problem of computing
the process number of general digraphs is NP-complete and not in APX (i.e., admitting no polynomial-time approximation
algorithm up to a constant factor, unless P = NP) [6]. A distributed polynomial-time algorithm to compute the process
number of trees (or forests) with symmetric arcs has been proposed in [4]. Furthermore, general heuristics to compute the
process number of a digraph are described in [5,21]. In [19], Solanowrites that ‘‘near-optimal solutions can be quickly found
in polynomial time’’ when computing the process number if the set of covered vertices is given as a part of the input. We
show that computing the process number of a digraph remains not in APX (and so is NP-complete) in this situation (see
Theorem 1), and that the gap with the process number could be arbitrarily large. When considering symmetric digraphs,
which can be thought of as a directed version of an undirected graph, one notices that the process number is closely related
to two other graph invariants, the node search number and the pathwidth. The node search number of a graph G, denoted by
sn(G), is the smallest p such that rules R1 and R2 (R3 is omitted) are sufficient to process G using at most p agents. See [2,9,
12,15,17] for more details. The pathwidth of a (undirected) graph G, denoted by pw(G), was introduced by Robertson and
Seymour in [18]. It has been proved in [10] by Ellis et al. that the pathwidth and the node search number are equivalent,
that is for any graph G, pw(G) = sn(G) − 1. The relationship between these parameters and the process number has been
described in [6]: pw(G) ≤ pn(G) ≤ pw(G) + 1 (and so sn(G) − 1 ≤ pn(G) ≤ sn(G)), where pn(G) is the process number
of the digraph built from G by replacing each edge by two opposite arcs. Since computing the pathwidth of a graph is NP-
complete [16] and not in APX [8], determining these parameters is as hard.

Minimum feedback vertex set. Given a digraph D, the problem of finding a process strategy that minimizes the number of
nodes covered by agents is equivalent to the one of computing aminimum feedback vertex set (MFVS) of D. Computing such
a set is well known to be NP-complete and APX-hard [14]. A 2-approximation algorithm is known in undirected graphs [1]
and in symmetric digraph (where a feedback vertex set is a vertex cover of the underlying graph). As far as we know, the
best approximation algorithm for computing a MFVS in general n-node digraphs has ratio log n log log n [11].

We define below the parametermf vs(D), using the notion of (p, q)-process strategy, corresponding to the size of a MFVS
of D.

Definition 2. Letmf vs(D) denote the smallest q such that there exists an (∞, q)-process strategy for D.

As an example, the digraph D of Fig. 1 satisfies mf vs(D) = 3. Indeed for i ∈ {1, 2, 3}, it is easy to see that either xi or yi
must be in any feedback vertex set (FVS) of D because of the cycle (xi, yi, xi). Furthermore, the removal of x1, x2, and x3 from
D is sufficient to break all the cycles. Thus these three nodes form a MFVS of D, and so mf vs(D) = 3. The corresponding
strategy, coveringmf vs(D) = 3 nodes by agents, is described in Fig. 1(b).
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Fig. 2.mf vsp(D) function of p for a digraph D. Filled circles represent minimal values of D.

As mentioned above, mf vs(D) ≥ pn(D). Moreover, the gap between these two parameters may be arbitrarily large. For
example, consider a symmetric path Pn composed of n ≥ 4 nodes u1, u2, . . . , un with symmetric arcs between ui and ui+1
for i = 1, . . . , n − 1. We get mf vs(Pn) = ⌊

n
2⌋ while pn(Pn) = 2. Indeed either ui or ui+1 must be in any FVS of Pn, and

so we deduce that nodes u2, u4, u6, . . . form a MFVS of Pn. Furthermore, pn(Pn) ≥ 2 because Pn is strongly connected and
mf vs(Pn) > 1. We then describe a process strategy for Pn using 2 agents: we put the first agent at u1 (R1), we put the second
agent at u2 (R1), we process u1 removing the agent from it (R2), we put this agent at u3 (R1), we process u2 removing the
agent from it (R2), we put an agent at u4 (R1), and so on.

Remark that this process strategy for Pn uses the optimal number of agents, pn(D) = 2, but all the n nodes are covered by
an agent at some step of the process strategy. For this digraph Pn, it is possible to describe a (pn(D) = 2,mf vs(D) = ⌊

n
2⌋)-

process strategy, that is a process strategy for Pn minimizing both the number of agents and the total number of covered
nodes.We put the first agent at u2 (R1), we process u1 (R3), we put the second agent at u4 (R1), we process u3 (R3), we process
u2 removing the agent from it (R2), we put this agent at u6 (R1), and so on. Unfortunately such good tradeoffs are not always
possible (it is the case for the digraph of Fig. 1 as explained later). Actually, we prove in this paper that there exist some
digraphs for whichminimizing one of these objectives arbitrarily impairs the quality of the solution for the other one. In the
following, we define formally the tradeoff metrics we will now study.

Tradeoff metrics. We introduce new tradeoff metrics in order to study the loss one may expect on one parameter when
adding a constraint on the other. In particular, what is the minimum number of vertices that must be covered by a process
strategy for D using pn(D) agents? Similarly, what is the minimum number of agents that must be used to process D while
coveringmf vs(D) vertices?

Definition 3. Given an integer q ≥ mf vs(D), we denote by pnq(D) the minimum p such that a (p, q)-process strategy for D
exists. We write pnmf vs+r(D) instead of pnmf vs(D)+r(D), r ≥ 0.

Definition 4. Given an integer p ≥ pn(D), we denote by mf vsp(D) the minimum q such that a (p, q)-process strategy for D
exists. We writemf vspn+r(D) instead ofmf vspn(D)+r(D), r ≥ 0.

Intuitively, pnmf vs(D) is theminimumnumber of agents required by a process strategyminimizing the number of covered
vertices, andmf vspn(D) is the minimum number of vertices that must be covered by a process strategy using the minimum
number of agents. Note that, pnmf vs(D) is upper bounded by the maximum MFVS of the strongly connected components of
D. Another straightforward remark is thatmf vsmf vs(D) = mf vs(D) for any digraph D.

To illustrate the pertinence of these tradeoff metrics, consider the digraph D of Fig. 1. Recall that pn(D) = 2 and
mf vs(D) = 3. We can easily verify that there does not exist a (2, 3)-process strategy for D, that is a process strategy
minimizing both p and q. On the other hand, we can exhibit a (2, 4)-process strategy (Fig. 1(a)) and a (3, 3)-process strategy
(Fig. 1(b)) for D. Hence, we have pnmf vs(D) = 3 while pn(D) = 2, and mf vspn(D) = 4 while mf vs(D) = 3. Intuitively, for
these two process strategies, we cannot decrease the value of one parameter without increasing the other.

We generalize this concept through the notion of minimal values of a digraph D. We say that (p, q) is a minimal value
of D if p = pnq(D) and q = mf vsp(D). Note that (pn(D),mf vspn(D)) and (pnmf vs(D),mf vs(D)) are both minimal values by
definition (and may be the same). For the digraph of Fig. 1, there are two minimal values: (2, 4) and (3, 3). Fig. 2 depicts
the variations of the minimum number q of vertices covered by a p-strategy for a digraph D (p ≥ pn(D)), i.e., mf vsp(D) as a
function of p. Clearly, it is a non-increasing function upper bounded bymf vspn(D) and lower bounded bymf vs(D).

Filled circles of Fig. 2 represent the shape of minimal values of D. Clearly, for a given digraph D, the number of minimal
values is at most linear in the number of nodes. We now give an example of a family of n-node digraphs for which the
number of minimal value is Ω(

√
n). Intuitively, it means that, in those digraphs D, starting from the optimal number of

agents pn(D), each extra agent added allows to strictly decrease the number of covered vertices, until the optimal,mf vs(D),
is reached. Let Hn be the symmetric directed star with n ≥ 3 branches of length 2 (for instance, H3 is the digraph of
Fig. 1), and let Gk be the graph that consists of the disjoint union of H3, . . . ,Hk, k ≥ 3. Then, for any 0 ≤ i ≤ k − 2,
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(pn(Gk) + i,mf vs(Gk) + k − 2 − i) = (2 + i, (k(k + 1)/2) − 5 + k − i) are minimal values (this can be easily proved using
the easy results described in Section 2.1).

1.2. Our results

Our results consist in an analysis of the behavior of the two given tradeoff measures both in general digraphs and in
symmetric digraphs. As mentioned above, in general, no process strategy minimizes both the number of agents and the
number of covered vertices (see example in Fig. 1). Hence, we are interested in the loss on one measure when the other is
constrained. In particular, we are interested in the ratios pnmf vs(D)

pn(D)
and mf vspn(D)

mf vs(D)
. This study involves various theorems on the

complexity of estimating this loss (Section 2) and the existence of digraphs for which it can be arbitrarily large (Section 3).
We also study in Section 4 the case of symmetric digraphs. Finally, we describe in Section 5 the relation between the routing
reconfiguration problem and the processing game.

More precisely, we first prove that computing the process number of a digraph is not in APX (and thus NP-complete),
even when the subset of vertices of the digraph at which an agent will be put is given (Theorem 1). Then, we prove that for
all α, β ≥ 0, the problems of determining the parameters α · pnmf vs(D)+β · pn(D) and α ·mf vspn(D)+β ·mf vs(D) are NP-
complete (Theorem 2). In particular, the problem of determining pnmf vs(D) is not in APX and the problem of determining
mf vspn(D) is APX-hard (Theorem 2). Then, we prove that for any q ≥ 0 (resp. for any p ≥ 0), the ratio pnmf vs+q(D)

pn(D)
(resp.

mf vspn+p(D)

mf vs(D)
) is not bounded even in the class of bounded process number digraphs (Theorems 3 and 4). However, we prove

that mf vspn(D)

mf vs(D)
≤ pn(D) for any symmetric digraph D (Lemma 5).

In Section 5, we detail the relationship between the processing game and the reconfiguration routing problem. In this
context, any instance of the routing reconfiguration problemmay be represented by a directed graph, called the dependency
digraph of this instance, such that the routing reconfiguration problem is equivalent to the processing of this digraph. We
prove the reverse, that is, any digraph is the dependency digraph of an instance of the reconfiguration problem (Theorem 7).

2. Complexity results

This section is devoted to the study of the complexity of the problems related to the parameters introduced in Section 1.1.
First, we need to define some digraphs.

2.1. Definition of some useful digraphs

LetHn be a symmetric directed star with n ≥ 3 branches each of which contains two vertices (the root r being at distance
2 from any leaf), with a total of 2n + 1 vertices. H3 is represented in Fig. 1. It is easy to check that pn(Hn) = 2. Indeed 1
agent is obviously not sufficient and there exists a (2, n + 1)-process strategy for Hn: an agent is put at the central node r ,
then we successively put an agent at a vertex x adjacent to r , the remaining neighbor of x (different from r) is processed, and
we process x itself relieving the agent on it. Then, the same process is applied until all vertices adjacent to r are processed,
and finally we process r . Fig. 1(a) represents a (2, 4)-process strategy for H3. Moreover, the single MFVS of Hn is the set X
of the n vertices adjacent to r . It is easy to check that the single process strategy occupying only the vertices of X consists
in putting n agents at all vertices of X . No agent can be removed while all agents have not been put. Thus this strategy is an
(n, n)-process strategy, and pnmf vs(Hn) = n. See Fig. 1(b) for such a process strategy for H3. To summarize, the two minimal
values of Hn are (pn(Hn),mf vspn(Hn)) = (2, n + 1) and (pnmf vs(Hn),mf vs(Hn)) = (n, n)).

Let Kn be a symmetric complete digraph of n nodes. It is easy to check that the unique minimal value of Kn is
(pn(Kn),mf vs(Kn)) = (n − 1, n − 1).

Let D = (V , A) be a symmetric digraph with V = {u1, . . . , un}. Let D̂ = (V ′, A′) be the symmetric digraph where
V ′

= V ∪ {v1, . . . , vn}, and D̂ is obtained from D by adding two symmetric arcs between ui and vi for i = 1, . . . , n. It is
easy to show that there exists an optimal process strategy for D̂ such that the set of occupied vertices is V . Indeed, note that,
for all i, at least one of ui or vi must be covered by an agent (any FVS of D̂ contains at least one of vi or ui). Furthermore, if
some step of a process strategy for D̂ consists in putting an agent at some vertex vi, then the process strategy can be easily
transformed by putting an agent at ui instead. In particular,mf vspn(D̂) = n.

2.2. NP-completeness

Before proving that computing the tradeoff parameters introduced in Section 1.1 areNP-complete,we prove the hardness
of computing the process number even if the subset of vertices that must be covered is given.

Indeed a possible approach for computing the process number, proposed by Solano in [19], consists of the following two
phases: (1) finding the subset of vertices of the digraph at which an agent will be put, and (2) deciding the order in which
the agents will be put at these vertices. Solano then said that the difficulty of the problemmainly lies in finding the accurate
subset of vertices that must be covered. We show that the second phase is also NP-complete and not in APX.
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Theorem 1. Computing the process number of a digraph is not in APX (and thus NP-complete), even when the subset of vertices
of the digraph at which an agent will be put is given.

Proof. LetD be any symmetric digraph. Let us consider the problemof computing an optimal process strategy for D̂when the
set of vertices covered by agents is constrained to be V . By the remark in Section 2.1, such an optimal strategy always exists.
It is easy to check that this problem is equivalent to the one of computing the node search number (and so the pathwidth)
of the underlying undirected graph of D which is NP-complete [16] and not in APX [8]. �

Theorem 2. Let α, β ≥ 0 be fixed, with max{α, β} > 0. The problem that takes a digraph D as an input and that aims at
determining:

• α · pnmf vs(D) + β · pn(D) is not in APX,
• α · mf vspn(D) + β · mf vs(D) is APX-hard.

Proof. The two cases for α = 0 and β > 0 clearly holds from the literature. Now, let us assume α > 0.

• We start with α · pnmf vs(D) + β · pn(D).
Let us first consider the case β = 0. That is, let us show that the problem of determining pnmf vs is not in APX. Indeed, let
D be the class of all digraphs D̂ obtained from some symmetric digraph D. For any symmetric digraph D, the problem of
computing pw(D) (where pw(D) is the pathwidth of the underlying graph of the symmetric digraph of D) is not in APX,
and pn(D̂) = pnmf vs(D̂) = pw(D) + 1 (see Theorem 1). Hence, the problem of determining pnmf vs is not in APX.
Assume now that β > 0. To prove that determining α · pnmf vs(D) + β · pn(D) is not in APX, let D1 be the disjoint
union of Hn and any n-node digraph D. First, let us note that pnmf vs(D1) = pnmf vs(Hn) because pnmf vs(D) ≤ n − 1
and pnmf vs(Hn) = n. Note that the process number of any digraph is the maximum for the process numbers of
its strongly connected components, thus pn(D1) = max{pn(D), pn(Hn)}. Therefore, since pn(Hn) = 2, we get that
α · pnmf vs(D1) + β · pn(D1) = α · n + β · max{pn(D), 2}. So, the NP-completeness comes from the NP-completeness of
the process number problem.

• We now consider α · mf vspn(D) + β · mf vs(D).
When β = 0, let us prove that the problem of determiningmf vspn is APX-hard. Let D2 be the disjoint union of Kn and any
n-node digraph D. First, let us note that pn(D2) = max{pn(Kn), pn(D)} because the process number of any digraph is the
maximum for the process numbers of its strongly connected components. It is easy to show that pn(D2) = pn(Kn) = n−1
because pn(D) ≤ n−1. Hence, whenDmust be processed, n−1 agents are available. So, in order tominimize the number
of nodes covered by agents, the agents must be placed on a MFVS of D. Thus mf vspn(D2) = n − 1 + mf vs(D), and the
result follows because computingmf vs(D) is APX-hard.
Assume now that β > 0. To prove that determining α ·mf vspn(D)+β ·mf vs(D) is APX-hard, let D3 be the disjoint union
of Kn, Hn, and D. Again, pn(D3) = max{pn(Kn), pn(Hn), pn(D)}. It is easy to show that pn(D3) = pn(Kn) = n − 1 because
pn(Hn) = 2 and pn(D) ≤ n − 1. Moreover, any process strategy of D3 using n − 1 agents must cover n − 1 nodes of Kn,
n+ 1 nodes of Hn (mf vs(Hn) = n but one extra agent is needed to cover only n nodes), andmf vs(D) nodes of D (because
n − 1 agents are available and mf vs(D) ≤ n − 1). Hence, mf vspn(D3) = (n − 1) + (n + 1) + mf vs(D). Furthermore,
mf vs(D3) = (n−1)+n+mf vs(D) becausemf vs(Kn) = n−1 andmf vs(Hn) = n. Thus α ·mf vspn(D3)+β ·mf vs(D3) =

(α + β)(mf vs(D) + 2n) − β . The result follows the APX-hardness of the MFVS problem. �

Corollary 1. For an input digraph D and two integers p ≥ 0 and q ≥ 0, and any α, β ≥ 0 ({α, β} ≠ {0, 0}) the problems of
determining:

• α.pnmf vs+q(D) + β.pn(D) are not in APX,
• α.mf vspn+p(D) + β.mf vs(D) are APX-hard.

3. Behavior of ratios in general digraphs

In this section, we study the behavior of parameters introduced in Section 1.1 and their ratios, showing that, in general,
good tradeoffs are impossible.

Theorem 3. For any C > 0 and any integer q ≥ 0, there exists a digraph D such that pnmf vs+q(D)

pn(D)
> C.

Proof. Consider the symmetric directed star Hn defined in Section 2.1. Now let D be the digraph consisting of q+1 pairwise
disjoint copies of Hn. So D has q + 1 strongly connected components. We get mf vs(D) = (q + 1)n. By definition, any
(pnmvfs+q(D),mf vs(D) + q)-process strategy for D covers at most q(n + 1) + n nodes. Therefore, there exists at least one of
the q+ 1 strongly connected components for which at most n nodes must be covered. Hence, the corresponding connected
component requires at least n agents to be processed, and actually n agents are sufficient because (n, n) is a minimal value
of Hn (see Section 2.1). Hence, pnmf vs+q(D) = nwhile pn(D) = 2. Taking n > 2C , we get pnmf vs+q(D)

pn(D)
> C . �
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(a) Dn,k of Theorem 4 and Corollary 3 (Case k odd). The red symbol ⊖ represents the inexistence of arcs between
these subgraphs. The arcs from V (Dn,k) \ V (K 1

n+1) to V (K 1
n+1) are not represented.

(b) D2,5 in Corollary 3 where the arcs from all vertices to triangle K 1
3 have been omitted.

Fig. 3. Digraph Dn,k described in Theorem 4 and Corollary 3.

Note that if it is allowed to cover mf vs(D) + q + 1 nodes during the process strategy (instead of mf vs(D) + q), then
the number of agents required is pn(D). In other words, for the digraph D described in the proof of Theorem 3, we get
pnmf vs+q+1(D)

pn(D)
= 1 while pnmf vs+q(D)

pn(D)
=

n
2 .

Corollary 2. For any C > 0, there exists a digraph D such that pnmf vs(D)

pn(D)
> C.

In what follows, we present similar results for the second ratio.

Theorem 4. For any C > 0 and any integer p ≥ 0, there exists a digraph D such that mf vspn+p(D)

mf vs(D)
> C.

Proof. Let n ≥ 2 and let k ≥ 1 be an odd integer. Let us consider the digraph Dn,k built as follows. Let IS1n , . . . , IS
k
n be

k independent sets, each IStn (1 ≤ t ≤ k) having n vertices: yt1, y
t
2, . . . , y

t
n. Let Pn,k be the digraph obtained from the k

independent sets IStn (1 ≤ t ≤ k) by adding the arcs from yti to yt+1
j , for 1 ≤ j ≤ i ≤ n and t = 1, 3, . . . , k − 2, and from yti

to yt+1
j , for 1 ≤ i ≤ j ≤ n and t = 2, 4, . . . , k − 1. Let Kn+1 be the symmetric clique with n + 1 nodes: x1, x2, . . . , xn+1.
The digraph Dn,k is obtained from two copies P1

n,k, P
2
n,k of Pn,k and two copies K 1

n+1, K
2
n+1 of Kn+1, by adding the following

arcs. In what follows, yt,aj denotes the jth vertex in the tth independent set of Pa
n,k, where j ≤ n, t ∈ {1, k}, a ∈ {1, 2}, and

xaj denotes the jth vertex of K a
n , where j ≤ n + 1, a ∈ {1, 2}. There are arcs from xai to y1,aj , for 1 ≤ i ≤ j ≤ n and a = 1, 2,

and from yk,ai to xbj , for 1 ≤ i ≤ j ≤ n, a = 1, 2 and b = 3 − a. Finally, there is an arc from each node of V (Dn,k) \ V (K 1
n+1) to

each node of V (K 1
n+1). Note that the final arcs are not needed to obtain the results but help to make the proof less technical.

Fig. 3(a) shows the general shape of Dn,k, where the red symbol ⊖ represents the inexistence of arcs between these
subgraphs. D2,5 is depicted in Fig. 3(b). For not overloading the figures, the arcs from V (Dn,k) \ V (K 1

n+1) to V (K 1
n+1) are not

represented.
Clearly, mf vs(Dn,k) = 2n, and any MFVS consists of {x11, . . . , x

1
n} plus n vertices of K 2

n+1.
First, note that to process one vertex of K 1

n+1, there must be a step of any process strategy for Dn,k where n agents are
simultaneously occupying n nodes of K 1

n+1. Hence, pn(Dn,k) ≥ n. Note that, similarly, any process strategy for Dn,k must
occupy n vertices of K 2

n+1. Moreover, because of the arcs from V (Dn,k) \V (K 1
n+1) to V (K 1

n+1), any agent that is placed at some
vertex in V (Dn,k) \ V (K 1

n+1) can only be removed when all vertices of K 1
n+1 are occupied or processed. Consider any process

strategy S for Dn,k (in particular, S uses at least n agents) and let s0 be the first step of S that does not consist in placing an
agent at some vertex of K 1

n+1. By the above remarks, after step s0 − 1 of S, n agents are occupying n vertices of V (K 1
n+1).

Up to reorder the first s0 − 1 steps of S, we obtain a process strategy for Dn,k that starts by placing n agents at n vertices of
V (K 1

n+1), without increasing the number of agents used nor the number of vertices occupied by S. Moreover, if the vertex
of V (K 1

n+1) that is not occupied is x1i with i < n + 1, it means that an agent is placed at x1n+1 during the first n steps of the
strategy. Replacing this operation by the placement of an agent at x1i instead of x1n+1 does not modify the remaining part of
the strategy (but the operation ‘‘remove the agent from x1n+1’’ which is replaced by ‘‘remove the agent from x1i ’’) since the
vertex x1n+1 can be processed immediately when the n other vertices of K 1

n+1 are occupied. Hence, we may assume that S
starts by placing agents at {x11, . . . , x

1
n} and then processes x1n+1.
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Second, any process strategy for any graph can easily be modified, without increasing (possibly decreasing) the number
of used agents nor the number of occupied vertices, in such a way that the strategy processes all possible vertices before
placing or removing agents. In other words, the rule R3 can be made prior without increasing the considered parameters.
Therefore, any process strategy S for Dn,k can be modified, without increasing the number of agents used nor the number of
vertices occupied by S, into a strategy that first places n agents at {x11, . . . , x

1
n}, then processes x1n+1 and all vertices of P2

n,k,
and finally that mimics S. Such a strategy is called a good process strategy for Dn,k.

Third, pn(Dn,k) ≤ n+1 as proved by the following strategy S∗. First, place n agents at {x11, . . . , x
1
n}, then process x1n+1, and

then process all vertices of P2
n,k. In the next sentence, y0,1i denotes x1i and yk+1,1

i denotes x2i , i ≤ n. Then, for j = 1 . . . k + 1,
the jth phase of S∗ consists of the following: for i = 1 . . . n, place an agent at yj,1n−i+1 if j odd (resp., at yj,1i if j even) and remove
the agent at yj−1,1

n−i+1 (resp., at yj−1,1
i if j even). Finally, process all vertices of K 2

n+1.
Let p, 0 ≤ p ≤ n − 2 (we choose n ≥ p − 2). Let S be a good process strategy for Dn,k that uses n + 1 + p agents (which

exists by the previous remarks). We assume that S minimizes the number q of independent sets ISt,1n of Dn,k for which a
vertex is occupied during the execution of S. Such an independent set is said touched. Note that the transformation that
makes a strategy good does not increase the number of touched independent sets. Therefore, 2n + q ≤ mf vsn+1+p(Dn,k)
since any strategy occupies n vertices in each clique plus at least one vertex per touched independent set. In what follows,
we will prove that q ≥ k, i.e., all independent sets of P1

n,k must be touched, and then, taking k > 2n(C − 1), we get that
mf vspn+p(Dn,k)

mf vs(Dn,k)
=

mf vspn+p(Dn,k)

2n ≥
mf vsn+1+p(Dn,k)

2n ≥
2n+k
2n > C .

It remains to prove that S touches all the k independent sets of P1
n,k. To do so, we will modify S, possibly increasing the

number of occupied vertices but without increasing the number of touched independent sets.
Since S is good, it first places n agents at {x11, . . . , x

1
n}, then processes x1n+1 and all vertices of P2

n,k. We set x1i = y0,1i , for all
i ≤ n. Let S0 = S. For 0 < j < k, let S j be the strategy that mimics the j first phases of S∗ and then performs in the same
order those movements of S0 that concern the unprocessed vertices at this step. We prove by induction on j < k that S j can
be transformed into the good process strategy S j+1 for Dn,k satisfying the desired properties without increasing the number
of touched independent sets. Clearly, S0 is a good process strategy for Dn,k that satisfies these properties.

Assume that, for some 0 ≤ j < k − 1, S j is a good process strategy that satisfies the desired properties. Then, S j starts by
occupying the vertices of {x11, . . . , x

1
n}, processes x

1
n+1 and the vertices of P2

n,k and then occupies and processes successively
all vertices of ISr,1n , r = 1 . . . j until all vertices of IS j,1n are occupied. Let sj be the step of S j when it occurs. We first prove that
S j touches IS j+1,1

n . Indeed, if j is even, there are n vertex-disjoint paths from yj+1,1
n (resp., from yj+1,1

1 if j is odd) to x21, . . . , x
2
n.

While yj+1,1
n (resp., from yj+1,1

1 if j is odd) is not processed, no agent in IS j,1n can be removed, and thus only p + 1 ≤ n − 1
agents are available. Therefore, the only way to process yj+1,1

n (resp., from yj+1,1
1 if j is odd) is to place an agent at it. Hence,

there is a step of S j (hence, of S0) that consists of placing an agent at yj+1,1
n (resp., yj+1,1

1 if j is odd). Hence, S0 touches IS j+1,1
n .

To conclude, we modify S j by adding after step sj the j + 1th phase of S∗. That is, after step j, the strategy successively
occupies the vertices of IS j+1,1

n removing the agents at IS j,1n until all vertices of IS j+1,1
n are occupied and all vertices of IS j,1n

have been processed. Then, the strategy mimics the remaining steps of S j. The strategy obtained in such a way is clearly S j+1

that satisfies all desired properties. In particular, the obtained strategy is a good process strategy for Dn,k that touches the
same independent sets as S0. �

Note that there exists a (pn(D)+p+1,mf vs(D))-process strategy for the digraphDn,k described in the proof of Theorem4
whereas the minimum q such that a (pn(D) + p, q)-process strategy for Dn,k exists, is arbitrarily large.

Corollary 3. For any C > 0, there exists a digraph D such that mf vspn(D)

mf vs(D)
> C.

We obtain this result by considering the digraph Dn,k described in Fig. 3(a), with n = 2 and k ≥ 1 (Fig. 3(b) represents
D2,5). This digraph is such that pn(D2,k) = 3 andmf vs(D2,k) = 4 while mf vspn(D2,k)

mf vs(D2,k)
=

k+4
4 is unbounded.

Lemma 5 in Section 4 shows that, in the class of symmetric digraphs with bounded process number, mf vspn(D)

mf vs(D)
is bounded.

4. Behavior of ratios in symmetric digraphs

We address in this section the behavior of mf vspn(D)

mf vs(D)
for symmetric digraphs D. Note that the behavior of pnmf vs+q(D)

pn(D)
and

pnmf vs(D)

pn(D)
have already been studied in Section 3 for symmetric digraphs with bounded process number.

Lemma 5. For any symmetric digraph D, mf vspn(D)

mf vs(D)
≤ pn(D).

Proof. Without loss of generality, we prove the lemma for a connected digraph D. Let S be a (pn(D),mf vspn(D))-process
strategy for D = (V , E). Let O ⊆ V be the set of vertices occupied by an agent during the execution of S. Let F be a MFVS of
D. Let us partition V into (Y , X,W , Z) = (O∩ F ,O \ F , F \ O, V \ (O∪ F)). Since D is symmetric, V \ F is an independent set
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Fig. 4. Proof of Lemma 5.

(a) SDn . (b) SD5 .

Fig. 5. Symmetric digraph SDn of Lemma 6 (a) and instance of SDn when n = 5 (b). The red symbol ⊖ represents the absence of arcs.

because it is the complementary of aMFVS. Since the vertices not occupied by S have all their neighbors occupied, V \O is an
independent set. Given V ′

⊆ V , N(V ′) denotes the set of neighbors of the vertices in V ′. The partition is illustrated in Fig. 4.
First, note that |N(W )∩X | ≤ pn(D)|W |, because, for any vertex v ∈ W to be processed, all its neighborsmust be occupied

by an agent. Thus, the maximum degree of v is pn(D).
Then, we prove that |X \N(W )| ≤ (pn(D)− 1)|Y |. Let R = X \N(W ). Because X ∪ Z is an independent set, for any v ∈ R,

N(v) ⊆ Y . Let T = N(R) ⊆ Y . Note that N(T ) ∩ R = R because D is connected and symmetric. Let us order the vertices of
T = {v1, . . . , vt} in the sequence in which they are processed (when the agents are removed) when executing S. For any i,
1 ≤ i ≤ t , let Ni =


j≤i N(vj) ∩ R. We aim at proving that |N1| < pn(D) and |Ni+1 \ Ni| < pn(D) for any i < t . Hence, we

obtain |Nt | = |R| ≤ (pn(D) − 1)|T | ≤ (pn(D) − 1)|Y |.
Let us consider the step of S just before an agent is removed from v1. Let v ∈ N1 ≠ ∅. Since the agent will be removed

from v1, either v has already been processed or is occupied by an agent. We prove that there is a vertex in N(v) ⊆ T that
has not been occupied yet and thus v must be occupied. Indeed, otherwise, all neighbors of v are occupied (since, at this
step, no agents have been removed from the vertices of T ) and the strategy can process v without placing any agent on v,
contradicting the fact that S occupies the fewest vertices as possible. Therefore, just before an agent is to be removed from
v1, all vertices of N1 are occupied by an agent. Hence, |N1| < pn(D).

Now, let 1 < i ≤ t . Let us consider the step of S just before an agent is removed from vi. Let v ∈ Ni \Ni−1 if such a vertex
exists. Since the agent will be removed from vi, either v has already been processed or is occupied by an agent. We prove
that there is a vertex in N(v) ⊆ T \ Ni−1 that has not been occupied yet and thus v must be occupied. Indeed, otherwise, all
neighbors of v are occupied (since, at this step, no agents have been removed from the vertices of T \Ni−1) and the strategy
can process v without placing any agent on v, contradicting the fact that S occupies the fewest vertices as possible. Therefore,
just before an agent is to be removed from vi, all vertices of Ni+1 \ Ni are occupied by an agent. Hence, |Ni+1 \ Ni| < pn(D).

To conclude:mf vspn(D) = |O| = |Y |+ |X | and |X | = |X \N(W )|+ |N(W )∩X |. Hence,mf vspn(D) ≤ pn(D)(|Y |+ |W |) =

pn(D)|F | = pn(D) · mf vs(D). �

Lemma 6. For any given ε > 0, there exists a symmetric digraph D such that 3 − ε ≤
mf vspn(D)

mf vs(D)
< 3.

Proof. Let n ≥ 1. Let us consider the digraph SDn built as follows. Let IS1n and IS2n be two independent sets of n nodes each,
respectively, x1, . . . , xn and z1, . . . , zn. Let Kn+1 be a symmetric clique of n + 1 nodes y1, . . . , yn, yn+1 = v. The digraph
SDn is built starting from the disjoint union of IS1n , IS

2
n , Kn+1 and 6 isolated vertices {a, b, c, d, e, f } by adding the following

arcs. There are symmetric arcs between the nodes xi and yj and the nodes zi and yj, for any 1 ≤ i ≤ j ≤ n. Furthermore, all
symmetric arcs of the complete bipartite graph with partitions {b, c} and IS1n are added. Similarly, all symmetric arcs of the
complete bipartite graph with partitions {d, e} and IS2n are added. Finally, the symmetric arcs (a, b), (a, c), (d, f ), (e, f ) are
added. The general shape of SDn is depicted in Fig. 5(a). The digraph SD5 is represented in Fig. 5(b).
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Note that the set F = {y1, . . . , yn, b, c, d, e} is a feedback vertex set of SDn, with |F | = n + 4. Thus mf vs(SDn) ≤ n + 4
(actually, one can easily check that F is a minimum feedback vertex set of SDn). Clearly, pn(SDn) ≥ n. In what follows, we
prove that any strategy using n+1 agents needs to cover at least 3n+2 vertices, and we present an (n+1, 3n+2)-process
strategy for SDn. Sincemf vsn+1(D) ≤ mf vspn(D) for any digraph D, the result follows.

First, we prove by contradiction that all process strategies for SDn using n + 1 agents must start by processing either the
nodes b and c or the nodes d and e, and so by placing the n + 1 agents either at vertices a and x1, . . . , xn or at vertices f and
z1, . . . , zn.

Suppose that the first vertex to be processed is either a or belongs to IS1n , and it is processed at step s. Therefore, the
vertices b and c must be occupied by agents at this step (such that a or a vertex in IS1n can be processed thereafter). Without
loss of generality, let us assume that b is processed, say at step s′, before c. Since at most n − 1 agents are available while c
and b are occupied, no vertex of the clique Kn+1 can be processed before step s′. On the other hand, at step s′, all vertices of
IS1n are processed or occupied by agents such that b can be processed. Let X be the subset of vertices of IS1n that are occupied
at step s′, and let X̄ = V (IS1n) \ X . For any xi ∈ X̄ , yi must be occupied at step s′ (since xi is processed and yi is not). Hence, at
step s′, at least 2 + |X | + |X̄ | = n + 2 agents are occupying some vertices, a contradiction. By symmetry, f and any vertex
of IS2n cannot be the first vertex to be processed.

Now suppose that the first vertex to be processed is yi ∈ Kn+1, i ≤ n + 1. Note that all vertices of Kn+1, but yn+1 = v,
have at least n + 2 outneighbors. Therefore, i = n + 1. When v is processed, the n vertices of Kn+1 \ {v} must be occupied,
leaving at most one free agent. But now, all vertices of Kn+1 but v have at least 2 unprocessed outneighbors. Whatever be
the placement of the last agent, no other vertex can be processed and no agents can be released. Hence, the strategy fails, a
contradiction.

Hence, any process strategy using n + 1 agents must start by processing b, c, d or e. Without loss of generality, by
symmetry, let us assume that the first vertex to be processed is b. Hence, the strategy must start by placing agents at any
vertex in {a} ∪ V (IS1n). At this step, the strategy processes b and c without covering them. Then a can be processed and the
agent at it is released. At this step, no other vertex can be processed.Moreover, the onlymove that can be done is to place the
free agent at yn. Indeed, any other move would let all agents blocked. Then the free agent is placed at node yn and xn can be
processed and the agent occupying it can be released. Similarly, the strategy sequentially places an agent at yn−i, processes
xn−i and removes the corresponding agent, for 1 ≤ i ≤ n − 1. It is easy to check that any variation of this would make the
strategy immediately fail. Once all vertices y1, . . . , yn are occupied, then v can be processed without being covered. Then,
the strategy goes on being highly constrained: for 1 ≤ i ≤ n, the free agent occupies zi, allowing to process yi and to free
the agent occupying it. Finally, when all vertices of IS2n are occupied, the free agent must occupy f , and all remaining vertices
may be processed. Again, all these moves are forced for, otherwise, the strategy would be blocked.

Such a strategy covers 3n + 2 nodes. Therefore, mf vspn(SDn) ≥ mf vsn+1(SDn) = 3n + 2. Hence, mf vspn(SDn)
mf vs(SDn)

≥
3n+2
n+4 . For

n > 10
ϵ

− 4, we get mf vspn(SDn)
mf vs(SDn)

≥ 3 − ϵ. Moreover, since SDn has 3n + 7 vertices, we get mf vspn(SDn) ≤ 3n + 6, and so
mf vspn(SDn)
mf vs(SDn)

< 3. �

Conjecture 1. For any symmetric digraph D, mf vspn(D)

mf vs(D)
≤ 3.

5. Process strategy out of the routing reconfiguration problem

The routing reconfiguration problem occurs in connection-oriented networks such as telephone, MPLS, or WDM [3,5–7,
19,21]. In such networks, a connection corresponds to the transmission of a data flow from a source to a destination, and is
usually associated with a capacitated path (or a wavelength in WDM optical networks). A routing is the set of paths serving
the connections. In the context of all opticalWDMnetworkswithoutwavelength conversion, we not only consider paths but
lightpaths, that is a path in the network and its specific wavelength. Without loss of generality, we assume here that each
arc of the network has capacity one, and that each connection requires one unit of capacity (each arc has one wavelength).
Consequently, no two paths can share the same arc (this is a valid assumption in WDM networks where no two lightpaths
can use the same wavelength on the same fiber). When a link of the network needs to be repaired, it might be necessary to
change the routing of the connection using it, and incidentally to change the routing of other connections if the network has
not enough free resources. Computing a new viable routing is a well-known hard problem, but it is not the concern of this
paper. Indeed, this is not the end of our worries: once a new routing not using the unavailable links is computed, it is not
acceptable to stop all the connections going on, and change the routing, as it would result in a bad quality of service for the
users (such operation requires minutes inWDM networks). Instead, it is preferred that each connection first establishes the
new path on which it transmits data, and then stops the former one. This requires a proper scheduling to avoid conflicts in
accessing resources (resources needed for a newpathmust be freed by other connections first). However, cyclic dependences
might force to interrupt some connections during that phase. The aim of the routing reconfiguration problem is to optimize
tradeoffs between the total number and the concurrent number of connections to interrupt.

As an example, a way to reconfigure the instance depicted in Fig. 6 may be to interrupt connections (h, c), (d, b), (e, j),
then set up the newpaths of all other connections, tear down their old routes, and finally, set up the newpaths of connections
(h, c), (d, b), (e, j). Such a strategy interrupts a total of 3 connections and these ones are interrupted simultaneously.
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(b) New set of routes S2 .

(i,j)

(h,i) (e,j)(h,c)

(d,b)(d,c)

(e,b)

(c) Dependency digraph D from
S1 to S2 .

Fig. 6. Instance of the reconfiguration problem consisting of a network with 10 nodes and symmetric arcs, 8 connections (h, i), (h, c), (d, c), (d, b),
(e, b), (e, j), (i, j), (g, i) to be reestablished. (a) Depicts the old set of routes S1 , (b) the new set S2 , and (c) the dependency digraph from S1 to S2 .

Another strategymay consist of interrupting the connection (h, i), then sequentially: interrupt connection (h, c), reconfigure
(d, c) without interruption for it, set up the new route of (h, c), then reconfigure in the same way, first (d, b) and (e, b)
without interruption for these two requests, and then (e, j) and (i, j). Finally, set up the new route of (h, i). The second
strategy implies the interruption of 4 connections, but at most 2 connections are interrupted simultaneously.

Indeed, the possible objectives are (1) to minimize the maximum number of concurrent interruptions [5,6,19–21], and
(2) to minimize the total number of disrupted connections [13]. Following [6,13], these two problems can be expressed
through the theoretical game described in Section 1.1, on the dependency digraph [13]. Given the initial routing and the
new one, the dependency digraph contains one node per connection that must be switched. There is an arc from node u to
node v if the initial route of connection v uses resources that are needed by the new route of connection u. Fig. 6 shows an
instance of the reconfiguration problem and its corresponding dependency digraph. In Fig. 6(c), there is an arc from vertex
(d, c) to vertex (h, c), because the new route used by connection (d, c) (Fig. 6(b)) uses resources seized by connection (h, c)
in the initial configuration (Fig. 6(a)). Other arcs are built in the same way.

Given the dependency digraph D of an instance of the problem, a (p, q)-process strategy for D corresponds to a valid
reconfiguration of the connections where p is the maximum number of concurrent disruptions and q is the total number of
interruptions. Indeed the three rules can be viewed in terms of reconfiguration of requests.

R1 Put an agent at a vertex v of D;
Interrupt the request corresponding to v.

R2 Remove an agent from a vertex v of D if all its outneighbors are either processed or occupied by an agent, and process v;
Route an interrupted connection when final resources are available.

R3 Process an unoccupied vertex v of D if all its outneighbors are either processed or occupied by an agent;
Reroute a non-interrupted connection when final resources are available.

Clearly, any instance of the routing reconfiguration problem may be represented by its dependency digraph. Therefore,
the next theorem proves the equivalence between instances of the reconfiguration problem and dependency digraphs.

Theorem 7. Any digraph D is the dependency digraph of an instance of the routing reconfiguration problem whose network is a
grid.

Proof. Roughly, consider a grid network where each initial lightpath of any connection is some row of the grid. If two
connections i and k are linked by an arc (i, k) in the dependency digraph, then we build the new lightpaths of both
connections as depicted in Fig. 7, which actually create the desired dependence. Note that the lightpath of connection k
is deported on an additional row, i.e., a row corresponding to no connection. For each arc of the dependency digraph, we
can use different columns of the grid network, in such a way that these transformations may be done independently.

More formally, let D = (V , A) be a digraph with V = {c1, . . . , cn} and A = {a1, . . . , am}. Let us define the network G as
an (n+ 2) × (2m) grid such that each edge of which has capacity one. Let Ri denotes the ith row of G (0 ≤ i ≤ n+ 1) and Ci
its ith column (1 ≤ j ≤ 2m), and let vi,j ∈ V (G) be the vertex in Ri ∩ Cj. For any i, 1 ≤ i ≤ n, connection i, corresponding to
ci in D, occurs between vi,1 ∈ V (G), being the leftmost vertex of Ri and vi,2m ∈ V (G), being the rightmost vertex of Ri, and
let the initial lightpath of connection i follows Ri. Now, we present an iterative method to build the new lightpath of each
connection. Initially, for any i, 1 ≤ i ≤ n, the new lightpath P0

i of connection i equals the old lightpath Ri. Now, after the
(j−1)th step (0 < j ≤ m) of themethod, let P j−1

i be the current value of the new lightpath of connection i and assume that in
the subgraph of G induced by columns (C2j−1, . . . , C2m), P j−1

i equals Ri. Consider aj = (ci, ck) ∈ A and let us do the following
transformation depicted in Fig. 7. For any ℓ /∈ {i, k}, P j

ℓ = P j−1
ℓ . Now, P j

i is defined by replacing the edge (vi,2j−1, vi,2j) in
P j−1
i by the shortest path from vi,2j−1 to vk,2j−1 (following C2j−1), the edge (vk,2j−1, vk,2j), and the shortest path from vk,2j to

vi,2j (following C2j). Similarly, P j
k is defined by replacing the edge (vk,2j−1, vk,2j) in P j−1

k by the shortest path from vk,2j−1 to
vn+1,2j−1 if i < k (resp., to v0,2j−1 if i > k), the edge (vn+1,2j−1, vn+1,2j) (resp., (v0,2j−1, v0,2j)), and the shortest path from
vn+1,2j to vk,2j (resp., from v0,2j to vk,2j). It is easy to check that the grid G, the sets of initial lightpaths {R1, . . . , Rn} and final
lightpaths {Pm

1 , . . . , Pm
n } admit D as dependency digraph. �
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Fig. 7. Scheme of the transformation in the proof of Theorem 7.

Note that a digraph may be the dependency digraph of various instances of the reconfiguration problem. Since any
digraph may be the dependency digraph of a realistic instance of the reconfiguration problem, Theorem 7 shows the
relevance of studying these problems through dependency digraph notion.

A feasible reconfiguration may be defined by a (p, q)-process strategy for the corresponding dependency digraph.
Problem (1) is equivalent to minimizing p (Section 1.1) and Problem (2) is similar to the one of minimizing q (Section 1.1).
Recall that Problem (1) corresponds to minimizing the maximum number of concurrent interruptions, and Problem (2)
corresponds to minimizing the total number of disrupted connections. Consider the dependency digraph D of Fig. 6. From
Section 1.1, we cannot minimize both p and q, that is the number of simultaneous disrupted requests and the total number
of interrupted connections. Indeed there does not exist a (2, 3)-process strategy while (2, 4) and (3, 3) exist (Fig. 1(a) and
Fig. 1(b)).

It is now easy to establish the relationship between tradeoff metrics introduced in Section 1.1 and tradeoffs for the
routing reconfiguration problem. For example, pnmf vs introduced in Definition 3 represents the minimum number of
requests that have to be simultaneously interrupted during the reconfiguration when the total number of interrupted
connections is minimum. Also Section 2 shows that the problems of computing these new tradeoff parameters for the
routing reconfiguration problem are NP-complete and not in APX. Finally, Section 3 proves that the loss one can expect
on one parameter when minimizing the other may be arbitrarily large.

6. Conclusion

In this paper, we address the routing reconfiguration problem through a game played on digraphs. We introduce the
notion of (p, q)-process strategy and some tradeoff metrics in order to minimize one metric under the constraint that the
other is fixed. We proved that the problems of computing these parameters are APX-hard and some are not in APX . We
also proved that there exist digraphs for which minimizing one parameter may increase the other arbitrarily. For further
research, we plan to continue our study for symmetric digraphs in order to (dis)prove Conjecture 1. Moreover, it would be
interesting to design exact algorithms and heuristics to compute (p, q)-process strategies.
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