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Abstract This paper studies the natural linear programming relaxation of the path
coloring problem. We prove constructively that finding an optimal fractional path col-
oring is Fixed Parameter Tractable (FPT), with the degree of the tree as parameter: the
fractional coloring of paths in a bounded degree trees can be done in a time which is
linear in the size of the tree, quadratic in the load of the set of paths, while exponential
in the degree of the tree. We give an algorithm based on the generation of an efficient
polynomial size linear program. Our algorithm is able to explore in polynomial time
the exponential number of different fractional colorings, thanks to the notion of trace
of a coloring that we introduce. We further give an upper bound on the cost of such
a coloring in binary trees and extend this algorithm to bounded degree graphs with
bounded treewidth. Finally, we also show some relationships between the integral and
fractional problems, and derive a 1 + 5/3e &~ 1.61—approximation algorithm for the
path coloring problem in bounded degree trees, improving on existing results. This
classic combinatorial problem finds applications in the minimization of the number
of wavelengths in wavelength division multiplexing (WDM) optical networks.
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1 Introduction

Given a graph, the fundamental graph coloring problem (also known as vertex color-
ing) is to assign colors to vertices in such a way that adjacent vertices are assigned
different colors and the number of colors used is minimized. In general, graph color-
ing is hard to solve to optimality or even to approximate [19].

A related problem, the path coloring problem, consists in coloring a set P of paths
on a graph G so that two paths sharing an arc (if the graph is directed) or an edge of
G have different colors. This problem is equivalent to coloring the corresponding
conflict graph, which is the undirected graph in which the vertices correspond to the
paths of P and are joined by an edge if the corresponding paths share an arc (or edge)
of G. Notice, however, that this problem was proven to be the same as standard graph
coloring in terms of complexity or difficulty to approximate, since any n-vertex graph
is the conflict graph of a set of paths of an n x n grid [8]. Furthermore, path coloring
was proved to be N'P-hard even when § is a tree [26].

This problem has many applications in wavelength division multiplexing (WDM)
optical networks and call scheduling, which have recently triggered a renewed inter-
est in path coloring on special classes of graphs. In such applications, one is given
an optical network with n nodes and a multiset of point-to-point communication re-
quests, and must assign to each request a lightpath and to each lightpath a color
(wavelength) so that conflicting lightpaths (i.e., lightpaths using the same link) are
assigned different colors. The goal is to minimize the number of colors used. This
problem (known as the wavelength routing problem) has been widely studied in the
literature [1, 3, 9, 11, 27]. It has been proved to be difficult (NP-hard even for rings
[27]), and one can show that there exist networks with O (n?) vertices and n requests
on which it is hard to decide if the optimal number of colors is either 1 or n. Thus,
in general, the problem is also hard to approximate. In the case where the lightpaths
have already been assigned to requests, the problem is known as the wavelength as-
signment problem (WAP).

This problem can be reduced to coloring directed paths of a directed graph (since
optical transmissions are one-way) usually symmetric. Note that there are important
differences between the directed and the undirected version of the problem; for in-
stance, the problem can be solved in polynomial time in symmetric directed stars, but
is in A/P-hard for undirected stars [16].

Our work focuses on fractional directed path coloring on symmetric directed
graphs, a natural linear programming relaxation of directed path coloring. We first
remark that a coloring of directed paths is a covering of the paths by independent sets
of directed paths. The relaxation arises when the independent sets may have fractional
weights [17]. In this paper we prove exact and approximation results for directed path
coloring and fractional directed path coloring in directed symmetric graphs. Unless
otherwise specified, we shall use the terms paths and graphs to denote directed paths
and symmetric directed graphs, respectively.

1.1 Previous Work

Recently, several papers studied path coloring on simple networks like meshes, rings
and trees [1, 3, 9, 15, 23, 25]. Most of the results study the relationship between the
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load of the set of paths (i.e., the maximum number of paths crossing an arc) and the
number of colors of an optimal coloring. Notice that the load is a lower bound for the
optimal number of colors.

For rings (where the problem is indeed the classical circular arc coloring prob-
lem), a % approximation was proposed in [21]; this approximation ratio was recently

improved to 1 + é ~ 1.37 [23]. This latter result exploits a reduction of the circular
arc coloring problem to a special instance of integral multicommodity flow prob-
lem [27]. The coloring is obtained by first solving the multicommodity flow problem
with fractional numbers and then performing a randomized rounding of this solution.

For trees, a polynomial time deterministic algorithm which colors any set of paths
of load / has been designed and proved to use at most 5//3 colors [9]. This algorithm
is greedy and proceeds in phases, one per each node v of the tree. The nodes are
considered following their breadth first numbering. The phase associated with node
v assumes that there is already a partial proper coloring where all paths that fouch
(i.e., start, end, or go through) nodes with numbers strictly smaller than v’s have been
colored and no other path has been colored. It has also been proved that this algorithm
is optimal within the class of greedy deterministic algorithms [9].

Recently, a different approach has been followed for binary trees giving rise to
a randomized algorithm [1]. Instead of greedily computing a solution from top to
bottom, this algorithm actually keeps a distribution of solutions (it computes from
top to bottom one random element of the distribution). With high probability, an
element of the distribution have the particularity to look locally random that is when
considering the restriction of the distribution to each star composing the tree. This
implies a kind of “average case” of the greedy deterministic algorithm and, hence,
an improvement of the approximation ratio. This algorithm colors any set of paths
of load / on a binary tree using at most 7//5 4 o(l) colors, with high probability.
The hidden constants in the lower order terms are huge and are due to the integrality
constraints of the problem and the random choices of the algorithm.

Note that these two results approximate the optimal number of colors within 5/3
and 7/5 + o(1), respectively.

A recent survey of results on the path coloring problem in trees has recently been
published [7].

1.2 Our Results

Our approach, detailed in Sect. 2, is based on the fact that the graph coloring problem
is equivalent to assigning unit cost to some independent sets of the graph such that
all vertices are covered (i.e., are contained in an independent set of unit cost) and the
total cost (i.e., the number of independent sets of unit cost) is minimized.

We then observe that Kumar’s fractional solution [23] gives in fact an optimal frac-
tional coloring of paths in the ring. Notice, however, that this relaxation is generally
also hard to approximate in general graphs.

The positive side of our observation is that it allows us to prove several results
related to integral and fractional path coloring, as follows.

e In Sect. 3 we show that fractional path coloring in bounded degree trees can be
solved in polynomial time. This result is constructive, i.e., our algorithm recur-
sively builds in polynomial time a polynomial size linear program whose final
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solution is such an optimal fractional coloring. For this we introduce the notion
of trace of a coloring, which encodes a local and aggregate snapshot of the col-
oring of the paths crossing each edge (or pair of opposite arcs). Using the traces,
we are able to explore the exponential number of different fractional colorings in
polynomial time.

e This fractional path coloring algorithm for trees can be easily adapted to any
bounded degree graph with bounded treewidth, as described in Sect. 4.1.

e We show an upper bound of 71/5 for the fractional path chromatic number in bi-
nary trees in terms of the load / of the set of paths (see Sects. 4.2 and 4.3). This
is somewhat related to the results in [1], since their randomized algorithm can be
seen as an attempt to emulate a balanced fractional coloring and, conversely, a bal-
anced fractional coloring can be interpreted as a perfect random sample of their
algorithm. However, the analysis of our algorithm is easier, our algorithm is de-
terministic, and our bound is tighter. Note that a tighter upper-bound of 1.336/
has been shown for the specific case of locally symmetric set of paths on binary
trees [6].

e With respect to integral path coloring, in Sect. 5 we provide a randomized approx-
imation algorithm for path coloring in bounded degree trees with approximation
ratio 1.61 + o(1). This is done by applying randomized rounding to the fractional
solution presented in Sect. 3. A subsequent work has recently tighten the approxi-
mation ratio to 1.511 4+ o(1) [5].

In the following section we recall the formal definitions of (fractional) coloring
and (fractional) path coloring.

2 Fractional Coloring

The graph coloring decision problem is usually considered as deciding on input of a
graph G and an integer k, whether it is possible to find a mapping from the vertices
to a given set of k colors such that no two adjacent vertices are mapped to the same
color. The related optimization problem consists of minimizing k, the size of the color
set. In other words, the coloring problem is a constrained packing of the vertices into
the set of colors. One can then express it as a polynomial size integer linear program
(denoted ILP), but unfortunately its linear relaxation gives no practical information
for building good integral solutions.

On the other hand, the coloring problem can also be seen as a covering problem.
Recall that a covering of the vertices by a collection of covering sets is a subset of
the collection such that each vertex belongs to at least one of the selected covering
set. In the following we explain that the coloring problem is the problem of finding a
minimum cost covering of the vertices by independent sets.

2.1 Vertex Coloring as a Covering Problem
In a graph coloring problem, a set of vertices that can be mapped to the same color

does not include any pair of adjacent vertices. We remark that this is the definition of
an independent set of the graph. Therefore, a coloring of the vertices is a family of

@ Springer



520 Algorithmica (2010) 58: 516-540

independent sets (the colors or, equivalently, the sets of vertices mapped to a common
color) such that any vertex belongs to exactly one of these independent sets. In other
words and defining the cost of a family of sets as the sum of the costs of each set,
finding an optimal coloring of the graph is equivalent to finding a minimum cost
integral partition of the vertices into independent sets of unit cost (i.e. each vertex
belongs to exactly one independent set).

Furthermore, a covering which is not a partition (i.e. at least one vertex belongs
to more than one independent set) induces a partition of cost at most the cost of the
covering, since any subset of an independent set is still an independent set. There-
fore, the graph coloring problem is also equivalent to finding a minimal cost integral
covering of the vertices by independent sets of unit cost.

Given a graph G = (V, E), this means solving the following integer linear pro-
gram:

minimize ) ;.7 x(I)
subjectto Y ;o7 Xx(I) =1 YveV
x(Del0,1) VIiel

where 7 denotes the collection of the independent sets of G and variable x(I) is set
to 1 if the independent set I belongs to the coloring (i.e. is a color), O otherwise.

Although this ILP may have an exponential number of variables (one per inde-
pendent set), its linear relaxation will be useful in the following. When the weights
over the independent sets are no longer constrained to integrality, the problem can be
written as the following linear program:

minimize ) ;.7 x(I)
subjectto Y ;o7 X(I) =1 YveV
0<i()<1 VIel

The corresponding combinatorial problem is called the fractional coloring prob-
lem [17], and the cost of an optimal solution is called fractional chromatic number,
denoted x r(9).

If x is a cost function over the independent sets of the graph G satisfying the
constraints of the above linear program, we call it a fractional coloring of G. We use
the symbol x (G) to denote the cost of the solution Xx.

In general, the fractional chromatic number is as hard to approximate as the chro-
matic number up to a logarithmic factor since Lovasz’s theorem on fractional covers
[24] states that any p-approximation of the fractional chromatic number leads to a
p - log(n)-approximation of the chromatic number. Note that the logarithmic factor
is negligible from a complexity point of view since the chromatic number is non-
approximable within 7!=¢ for all € > 0 [10].

Notwithstanding, this approach is very useful if we use duality results, as follows.
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Lemma 1 Computing the fractional chromatic number is polynomially equivalent to
solving the maximum weighted independent set problem.

Proof 1t is well-known that the dual of the linear program of a covering problem is
the linear program of the packing problem where there is a constraint per variable
of the primal and a variable per primal constraint. Therefore, the dual of the linear
program of the fractional coloring problem is the following [17]:

maximize ), y(v)

subjectto Y ,y(v)<1 IeZ
y() =0

Let us define the weight of an independent set / € Z as the sum of the weights of
its vertices: y(I) =), .; y(v).

In this dual problem, a nontrivial constraint is violated if and only if the weight of
one independent set / is greater than 1. Hence, the maximum weighted independent
set problem (MWIS) is a separation oracle for this last problem. According to the
separation and optimization equivalence [18, Theorem 4.2.7], the dual of fractional
coloring and the MWIS are equivalent up to a polynomial reduction. Moreover, by
duality, computing the fractional chromatic number and the optimum of its dual are
polynomially equivalent. Hence the lemma. U

Note that this duality argument does not provide any effective fractional coloring
algorithm, but rather a way to compute the fractional chromatic number in specific
cases.

On the positive side, we can notice that in the dual linear program, some con-
straints are obviously useless. If / is a maximal independent set for inclusion, any
independent set J C I will induce a constraint parallel to (considered as a cut hy-
perplane of the linear program’s polytope), and less restrictive than the one induced
by 7. This means that for a maximal independent set of size s, 2° — 1 constraints are
useless and could be dropped from the linear program, hence removing an exponen-
tial number of constraints. The intuition is then that the huge number of constraints
of the dual (or, equivalently, variables of the primal) may not be a drawback when
solving some classes of this problem.

The extension of the definition of fractional coloring to fractional path coloring
is given below. We also show that the fractional path chromatic number of paths in
bounded-degree trees can be computed in polynomial time using Lemma 1.

2.2 Fractional Path Coloring

As stated in the Introduction, the vertex coloring and path coloring are equivalent
problems, since coloring a set of paths in a graph is equivalent to coloring the corre-
sponding conflict graph, defined below.

Definition 1 Given G a symmetric directed graph, and P a set of paths in G, the
conflict graph of P in G is the graph whose vertices represent the paths of P and

where there is an edge between vertices representing paths sharing an arc of G.

We are now able to extend some terms of graph coloring to path coloring.
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Given a set of paths P in a graph G, we define an independent set of paths as a set
of pairwise arc-disjoint paths, i.e., a set of paths whose corresponding vertices form
an independent set of the conflict graph.! We can hence define the fractional path
coloring problem analogously to the vertex coloring problem.

Definition 2 Given G a graph and P a set of paths in G, an optimal fractional coloring
of P is a minimum cost fractional covering of the paths by independent sets of unit
cost.

The corresponding linear program is the same as the fractional vertex coloring,
and Lemma 1 still holds. We will denote by x (G, P) (x s (G, P)) the (fractional) path
chromatic number of P on G. We will also denote by /(G, P) the load of P on G, i.e.
the maximum number of paths of P using any given arc of G.

As far as the relationship between x and y s is concerned, the following result is
implicit in the work of Kumar [23], which addresses the case of the n-nodes ring,
denoted by C,;:

l n»
X(Cu. P) < X7 (Co P) + @ +0((Cn, PY).

In this context, e is the well-known Neper constant.

In the very specific case where the conflict graph is a proper circular arc graph,
Niessen and Kind [25] proved that x = [xs].

In the following we prove that computing the fractional chromatic number of a set
of paths in a bounded degree tree can be done in polynomial time.

Theorem 2 Given 7 a bounded degree tree and P a set of paths in T , the fractional
chromatic number of P in T, x s (T, P), can be computed in polynomial time.

Proof Lemma 1 claims the polynomiality equivalence between the computation of
the fractional chromatic number and the maximum weighted independent set.
Considering that 7 is rooted at any given vertex r, the maximum weighted in-
dependent set of P in 7 is obtained by a call to an algorithm proposed and proved
polynomial by Garg [13, 14]. This algorithm is reproduced as Algorithm 1. g

This result proves that it is possible to compute the fractional chromatic number
of a set of paths in a bounded degree tree in polynomial time, but does not give an
algorithm to obtain a corresponding fractional coloring. The main argument of the
proof is the fact that the dynamic programming tables generated by the algorithm
have size O(12?), where [ is the load of the set of paths and d the maximum degree
of the tree.

Moreover, due to the exponential number of variables involved in the fractional
coloring linear program, it is not straightforward to design a strategy relying on the
fractional chromatic number to compute an optimal fractional coloring. Nevertheless,

I1n particular, such independent sets may include path crossing opposite arcs, the graph being directed.
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Algorithm 1 Garg’s algorithm: MwIs algorithm for paths P in a tree 7

Input: 7, subtree of 7 rooted at node v, d, number of children of v, r root of 7
Input: On each arc, a “void” path of length 1 is defined and denoted ¢
QOutput: MWIS of paths P in a 7 and its weight
Data: Vv, p,q, I[v, p, q] MWIS of paths in 7, with paths p, ¢ touching v oppositely
Data: w[v, p, g] weight of I[v, p, q] not counting w(p) nor w(q)
for all node v such that its children have been processed do
for all paths p, g touching v oppositely do
letcj, j=1...dy, bethe jthchild of v
Iv, p,q] < ¥, wlv, p,q] <~ 0
forall P ={p;,q;,j=1...dy} st. p,ge P and Vj, p;,q; touch both v
and ¢; do
w(P) <« ZPGP\{p’q} w(p) {p and g are not counted}
if w(P)+ Zj wlcj, pj,qj1> wlv, p,q] then
Iv, p,ql < U; Ilcj, pj. q;1 wlv, p,ql <= w(P) + 3_; wlcj, pj. q;]
mark v as processed
Return I[r, 3, @], w(r, 9, ?]

we give in the following section an algorithm which builds a small linear program
in order to effectively produce solutions of the fractional path coloring problem in
bounded degree trees. The strategy of our algorithm is closely related to Garg’s algo-
rithm: our linear program is based on subproblems that are exponential in the degree
of the tree.

3 An Algorithm for Fractional Path Coloring in Bounded-Degree Trees

In this section we study the fractional path coloring problem in trees. We denote a
path going from node u to v by (u ~~ v), and a path going from u to v using the arc
(a, b) by (u ~»a — b~ v). The special path § denotes a non-existent or void path
on any arc.

The main idea of our algorithm is to recursively build a linear program of poly-
nomial size. In the following we will prove that two fractional path colorings of two
subtrees can be merged into one for the whole tree if and only if they coincide on
the arc where they overlap. This may still yield an exponential algorithm since there
may exist an exponential number of different fractional path colorings on an arc. In
order to cope with this difficulty, we define an aggregate coding of the “behavior” of
a coloring on a pair of opposite arcs, or edge, called the trace of this coloring.

3.1 Trace of a Fractional Coloring

Given a tree 7, and a solution for path coloring that is a weight function X on the
independent sets of paths in the tree 7, we define the trace of the fractional coloring
X on an edge e as the function X¢ : P2 — R, defined as follows.

e For any path p, let Z(p) be the set of independent sets containing p, and let
I(p,q) =Z(p) NI(q).
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Algorithm 2 spLIT (7, P) on e into (Zg, Py) and (77, P;)
Input: ¢ = {ug, u;} non-terminal edge of 7
(V;, E;) < connected components of 7 \ e u;, i =0, 1
Ti < (Vi Ufui—i}, Ei Ufe}), i =0,1
for all p € P do
if 3i, p € U; then
Pi<p
elseif 3i, p=(a~u; - ui—; ~b), ac U;,b e U;_; then
P« p=(a~uj—)
Pi—i < p=(u; ~b)

e Let Z¢(p, ¥) be the set of independent sets where only p crosses e. Let Z¢ (4, ¥)
be the set of independent sets not using e.

e For any pair of paths p, g crossing e in opposite directions, let the trace variable
for p and g on e be X°(p,q) =3 jc1(p.q) ¥ (D).

The trace function is a local and aggregate snapshot of the fractional coloring. Lo-
cal, because only the paths going through the edge e are considered and two different
colorings may have the same trace if their difference does not affect the coloring of
these paths. Aggregate, because the trace function does not code all the weights of
the independent sets, only sums of these variables. In the following we will show that
this loss of information is not critical, even if it allows to code an exponential number
of different colorings with polynomial size objects.

The trace X of the fractional coloring x is the set of the trace functions on all
edgesof 7 : X ={X¢ Ve T}.

Given an instance of fractional path coloring (7, P) and a constant ¢, we denote
by Tr.(7, P) the set of all the fractional colorings of (7', P) with cost less than c.

3.2 Split and Merge

Our algorithm proceeds by recursively constructing a polynomial size linear program
whose solution provides a fractional coloring. Our induction is based on merge and
split procedures which allow to build any instance of fractional path coloring starting
from instances on stars (i.e. a tree where only one vertex has degree larger than 1)
and merging them step by step.

Consider a fractional path coloring of (7, P), where 7 is not a star and such
that e = {u, v} is a non-terminal edge of 7. The splitting of 7 on edge e yields
two smaller instances of fractional path coloring, denoted (7, Py) and (71, Py), as
described by Algorithm 2 (cf. Fig. 1 for an illustration). Note that the split procedure
of any fractional coloring of 7~ with cost ¢ induces fractional colorings on (7, Po)
and (77, Pp) with cost less than ¢. From construction of the split procedure, both have
the same trace on e.

The split procedure is reverted by the merge procedure, described in Algorithm 3
and working as follows. Once two subproblems are generated by the split of (7, P)
into (Zp, Po) and (71, Py), if a fractional coloring is computed on each subproblem
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Fig. 1 Splitting a tree on e

Algorithm 3 MERGE X € Tr.(7y, Po), x| € Tr.(71,Py) into x € Tr.(7, P)
Input: Trace equality on edge e = {ug, u1}: X{ = X{, and P; = {p7;, p € P}
Output: X¢ = X§ = X{
VI eZ, x(I) is implicitly initialized with value 0
while 3po, qo € Po U {B}|X5(po, qo) # 0 do
{Trace equality ensures 3p,q € P, po = p|75, 90 = qi7; and X{(p|7;, 9\13) >
0}
select Iy € Zo(po, go) such that xo(lp) > 0
select I1 € Z1(p|7;, 917;) such that x;(I1) >0
Xmin < min(xo(lo), x1(11))
I < Io\{po,q0} Y i \{p\1;, 91, } Y {p, q} {By construction I € T}
increase x (1) by X,in
decrease x;(I;) by X,uin {Ensures trace equality}

such that they have the same trace on the splitting edge e, the merge builds a fractional
coloring of (7, P), as proved in Proposition 3.

Now, we prove that any element of Tr.(7, P) can be obtained from one element
of Tr.(7y, Poy) and one of Tr.(77, P1).

Proposition 3 The set of all possible merging of elements of Tr.(7y, Py) and
Tr. (71, P1) is included in Tr.(T, P) and is empty if and only if Tr.(T, P) is empty.

Proof Given two fractional colorings xo € Tr.(7y, Po) and x; € Tr.(77, P;) having
the same trace X{j and X{ on e, the merge procedure (Algorithm 3) applied to Xo
and x; produces an element of Tr.(7, P). To verify this claim, just note that this
procedure preserves the following invariants at each step:

e Paths are covered either by xg, X1 or X;
o X(P)+x0(Poy)=x(T,P)+x1(P1) =c.

It follows that, at the end of the main loop, X is a fractional coloring of (7, P)
with cost ¢. Moreover, for i = 1, 2, the trace of x on any edge of 7 equals the trace
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of x; in 7;. Therefore, the set of all possible merging of elements of Tr. (7, Pp) and
Tr.(77,P1) is included in Tr.(7, P).

Moreover, as stated before, the split of any element of Tr.(7, P) produces two
elements of Tr.(7g, Pp) and Tr.(77, P) that can be merged together into an element
of Tr. (7, P). O

Corollary 4 We can compute a polynomial size linear program whose solutions are
valid traces of elements of Tr.(T , P).

Proof We first assume that such a program exists for bounded degree d stars. We then
use a recursive algorithm to generate a linear program whose solutions are traces of
Tr.(7,P). Assume that 7 can be split on edge e into (Zy, Po) and (71, P;) and
let Sp (S1) be the linear program for traces of Tr.(Zg, Po) (Tr.(71, P1)), where we
assume that the trace on e is associated to the variables X{(p, ¢) and X (p, g). Then,
a system for (7, P) is:

S=SoUS U{X§(p.q)=X{(p.q) |Vp.q}

Therefore, if [ denotes the load of the set of paths, there are O (I 2y constraints per
edge of the tree (the trace equality constraints) and one system per star, i.e. per non-
terminal node of the tree. If s is a bound on the size of a linear program for a star, the
size of our linear program is then O (n(l 249).

A naive way to get a polynomial size linear program for the bounded degree d
stars case is to set one variable per independent set, which are polynomial in number,
as explained below.

The number of paths composing an independent set is obviously at most 2d and
there are at most 2d! paths in a bounded degree d star whose load is /. Therefore, the
number of independent sets composed of i paths is at most (2;.”) < dH*,

Consequently, there are less than 2d(2d! Y4 — 012 independent sets on a
bounded degree d star of load /, and as many variables in the linear program.

Fractional coloring is trivially described from these variables, and each trace vari-
able is obtained, by definition, as the addition of some of these variables. O

Proposition 5 Fractional path coloring in bounded degree d trees can be reduced to
solving a polynomial size linear program.

Proof We simply have to show how to compute an element of Tr.(7,P) from a
trace X of an element of Tr.(7, P) (obtained from Corollary 4). Again we proceed
inductively: we start from stars and find for each one a fractional coloring having the
trace that X induces on it. Then, if (7', P) can be split into (Zy, Po) and (71, Py),
Proposition 3 provides a way to merge fractional colorings of (7y, Py) and (71, P1),
when their traces are equal, and this is the case since they are subsets of X. |

3.3 Fractional Coloring is Fixed Parameter Tractable

Note that the model above induces very large systems, since we could get O (nl®)
variables for binary trees, and O (n1®) for ternary ones. In this section we show that
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fractional path coloring on trees is FPT [12]. Indeed, by identifying the independent
sets of a the paths on a star to a perfect matching of the complete bipartite graph, one
can describe the trace variable on a star with flow equations.

It is therefore possible to reduce the system size to O (dM (d)I*n), that is polyno-
mial in the problem size, while exponential only in the parameter d.

Proposition 6 Fractional path coloring in bounded degree d trees can be reduced to
solving a linear program of size O(d M (d)I*n).

Proof First, and without loss of generality, we assume that the load is uniform. Corol-
lary 4 shows that the size of the linear program of the fractional path coloring of
(T, P) of cost less than ¢ is O (nl?) plus the sum of the sizes of the linear programs
for each star of the tree 7', which is less than n times the size for a star of degree d.

Then, remark that if each possible path is present exactly once (what we will call
a canonical d-star), then the set of all independent sets loading each arc exactly once
(canonical independent sets) is isomorphic to the set of the perfect matchings in K 4.
Let M (d) denote the size of this set and note that M (d) depends only on d.

It is possible to describe the polytope of the matching of this bipartite graph with
simple flow equations [22], as follows.

Let us consider a star S = {vg, vi, ..., v4} € 7, where vy is the center of S and
d its degree. Arcs of S are {(vo, v;), (vi, vo), Vi € [1,...,d]}. Let M be the set of
independent sets of load 1 of S. For all M € M, we build an auxiliary flow network
Fyy, as follows.

— For each path p € T including a path of M, we add a vertex V (p) to Fy.

— For each pair of vertices V(p), V(g) such that 3i € [1,...,d]| (vo,v;) € p and
(vi, vo) € g, we add the arc (V(p), V(q)) to Fy.

— We define a flow function? fum on the arcs of Fj; which induces a flow function
fy onits vertices.

— For each leaf v; of the star we add to F), the constraint on f 1(,,

Y (V) =cu.

pl(vo,vi)Sp

Any solution to the previous system induces a covering of the paths with weight
f’(p) and a subpart of the trace of value f(p, q).
The total system for a star is obtained as follows.

— The flow equations for each matching M € M: define fj; variables;
- X(p,9) =) pem fm(p, q): computation of the trace variables;

— Y mem fr(p) = 1: covering of the paths;
— Y MeM €M = c: cost constraint.

Due to the above mentioned property of the matching polytope, this system de-
scribes the fractional coloring problem for a star with an encoding of the trace vari-
ables.

2By flow function we mean conservative for vertices. One can note that this function is a circulation since
no sink and no source are present.
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It follows that the fractional coloring of each star of 7 can be described with a
system of size at most M (d)(= | M|) times 12d. Hence, the system for 7 is of size
O dM(d)I’n). O

Notice that an optimal fractional coloring can be computed in polynomial time
even if the degree of the tree is d = O (max{logl//loglogl,logn/loglogn}), since
M) =0(d").

4 Extensions and Applications

In this section we extend the technique described in the previous section to bounded
degree graphs with bounded treewidth.

Furthermore, we obtain an algorithm for fractional path coloring on binary trees
with cost at most 7//5. Using the results for the fractional path coloring, we achieve
improved approximation algorithms for the path coloring problem in bounded degree
trees and bounded degree trees of rings, and upper bounds for the path chromatic
number in terms of the fractional path chromatic number and the load.

4.1 Some Polynomial Instances

In the case of bounded degree graphs with bounded treewidth, we obtain the follow-
ing.

Proposition 7 Fractional path coloring can be solved in polynomial time in bounded
degree graphs with bounded treewidth.

Proof The proof follows similar lines with Sect. 3. Consider a tree-decomposition
of the graph of width bounded by a given constant k. An “edge” of the tree-
decomposition is a cut of the graph that is also upper-bounded by a given k = Q (k%)
(see [4] for details). A node of the tree is a set of (k") vertices of the initial graph.
One can then define trace variables on each edge of the decomposition of size
bounded by O (*) and build a polynomial size linear program. g

4.2 Fractional Path Coloring on Binary Trees

Fractional path coloring on binary trees can be performed using a particular coloring,
called balanced coloring, where the traces depend only on the number of paths going
trough an arc.

Definition 3 For any given constant w € [0, 1], a w-balanced coloring of a set of
paths is a fractional path coloring such that the trace function over any arc e is %
for all paths using this arc. Le.,

XE(P,CI)Z Xe(p’@)zl_wv

w
@,

Ve, Vp, q paths using e in opposite directions.
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This particular kind of fractional path coloring will help us to exhibit an upper
bound on the cost of a fractional path coloring on binary trees.

Corollary 8 For any given constant w € [0, 1], any set of paths P in any binary tree
T can be w-balanced colored by independently coloring all the restrictions of P to
each of the ternary stars composing T .

Proof 1f one performs independent local colorings of all the ternary stars compos-
ing 7, then, by definition of the w-balanced coloring, the trace equality equations
of the linear program built in Sect. 3 are respected. Therefore, as stated in the proof
of Proposition 5, one can find a global fractional coloring consistent with the local
colorings using the merge procedure.

Moreover, the cost of such a w-balanced coloring is the maximum, over all the
ternary stars composing 7, of the local w-balanced colorings. O

A simple but exhaustive analysis shows that ternary stars can be colored in a bal-
anced way with at most %l colors—detailed in the next section—, this yields the
following Proposition.

Proposition 9 For any set of paths P of load (T, P) on a binary tree T , there exists
a fractional coloring of cost at most 71%73) Moreover, such a fractional coloring
can be computed in polynomial time.

This result is proved in Sect. 4.3, by showing that there exists a %-balanced color-

ing of P with cost at most W%P) for any set of path P on any ternary star 7.
As a corollary, we obtain that given a set of paths P on a binary tree T, the maxi-

mum independent set of paths of P has size at least %

4.3 Balanced Fractional Coloring of Ternary Stars

This section is dedicated to the case analysis of the w-balanced coloring of paths in
ternary stars. In order to get an upper bound of the cost of any balanced coloring, we
first define reduced 3-stars.

4.3.1 Reduced 3-Stars

A generic set of paths in a ternary star can be described by 12 parameters as depicted
in Fig. 2. This is too large to permit an exhaustive case study. In order to make such
an analysis tractable, we use a standard reduction [1], Algorithm 4, which transforms
any ternary star into a reduced 3-star which is described by only 3 parameters.

The resulting reduced 3-star, depicted in Fig. 3, has a more compact description
than the generic one, allowing an analysis which will give an upper bound on the cost
of the fractional coloring of any ternary star.

Lemma 10 The reduced 3-star can be described with 3 parameters o, B and y with

o+ B+ y =1. Furthermore, the reduction can only increase the cost of the fractional
coloring.
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Fig. 2 The generic 3-star and a0
its parameters

Vi, a; +b; +d; = luut,i

as + by +c0 = liILO

c0 ap+bs+c1 = linA,l

C
/ ) \ o Mtbote=lip,
bl d2 Vi <l 1 <l

/\ % lill,i out,i =
dl
g N )

al

Fig. 3 The generic reduced @ 8
3-star

T

a—+y

B+

Algorithm 4 Reduction of a set of paths P in a ternary star

Input: Central vertex = n., leaves =n;, i =0, 1,2
Let [ be the load of P
for all under-loaded arc e do
add paths of length 1 on e to reach load /
repeat
select p, path of length 1 from n; to n,
select g, path of length 1 from n. ton;, j#i
concatenate p and g into a path (n; — n. — n;)
until there are no more paths to concatenate

Proof Algorithm 4 first adds paths of length 1 in order to equalize the load. This step
can only increase the cost of the coloring. Once the load is uniform there is a flow
conservation law at the central vertex of the star since each edge supports the same
amount of paths in both directions.

The repeat-until loop terminates in at most 3/ steps since there are at most 3/ paths
arriving at the central vertex and one is processed at each step. The loop terminates
when there are no more paths to concatenate, which means that all remaining paths
of length 1 are found on only one link, say the link between ng and n. without loss
of generality. Moreover, the loop maintains the flow conservation since each step
concatenates one path arriving at the central vertex with one leaving it. Therefore,
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it is obvious that there are exactly the same amount, y, of paths of length 1 in each
direction (from ng to n, and from n. to ng).

The resulting set of paths is then a convex combination of 3 kinds of independent
sets: the counter-clockwise ((ng — n; — nz), o of them) and clockwise ((ng —
no — np1), B of them) circuits, and the set with 2 paths of length 1, (n9 — n.) and
(ne — ng), and 2 paths of lengths 2, (ny — n3) and (np — n1) (y of them), as
depicted in Fig. 3. Therefore, the 3 parameters o, 8, and y are enough to describe
the resulting set.

The cost of the coloring of the resulting set is greater or equal to the original one
since the concatenation cannot decrease it. (|

We can identify the parameters of the reduced star with the one of the generic star,
as follows.

apg=ay=a, by=bi=p, do=co=y, ai=a+y, b=B+y.

In the following, a pair of paths crossing an edge on opposite direction is called a
doublon.We say that a path touches a vertex v if it starts, ends, or go through v.

Definition 4 At a vertex n;, a doublon is a couple of non-void paths touching n; in
opposite directions. A half-doublon is a non-void path touching n; associated with
the void path ¢ in the opposite direction.

The definition of a w-balanced fractional coloring requires that on each link the
trace variable for any pair of paths using the link oppositely equals 7. In other words,
any doublon has to be covered with weight 7. Consequently, the half-doublon have
to be covered with weight 1 — w.

The actual list of the doublons and half-doublons of a reduced 3-star is described
in Appendix A. Based on this list, Appendix B describe the numbers of independent
sets of paths that are used in a balanced coloring of such a reduced 3-star. The cost
of such a coloring implies the result stated as Proposition 9: For any set of paths P

of load (T, P) on a binary tree T, there exists a fractional coloring of cost at most
(T, P)
—F—.

4.3.2 Proof of Proposition 9

The proof consists in showing that any set of paths on any binary tree admits a bal-
anced coloring with cost at most %

A detailed construction of such a coloring for paths on a reduced 3-star is given in
Appendix B. Corollary 8 and Lemma 10 complete the proof. g

Note that this result seems highly related to the randomized algorithm in [1], which

colors paths in binary trees with % + o(l) colors, but at the time of this writing no
formal equivalence has been proven.
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5 Integral Path Coloring in Trees

In this section we present an important application of our methods to the path coloring
problem in trees.

Note that the result of [9] states that there exists a polynomial time algorithm
which colors any set of paths P of load /(T, P) on a tree T with at most 5/(T, P)/3
colors. Since the load I(T, P) is a lower bound for the optimal number of colors, this
gives a 5/3-approximation algorithm. In the following we exploit the optimal solution
for the fractional path coloring which can be obtained in polynomial time for bounded
degree trees to design a randomized algorithm with better approximation ratio.

Given a solution x of the fractional path coloring of the set of paths P on atree T,
the idea is to perform a randomized rounding to X and obtain an integral solution x.
After rounding, x may not be a feasible solution to the path coloring problem since
some of the constraints of the form ), 7., x(1) > 1 may be violated. However,
this is a feasible solution to the path coloring problem on the set of paths P’ C P,
defined as the set of paths contained in independent sets / such that x(/) = 1. This
means that we have properly colored some of the paths of P with x (7, P) colors.

After this rounding procedure, a set of paths P\P’ remains to be colored. The
analysis presented in [23] for a similar procedure in circular arc graphs holds. The
procedure is a balls and bins-like algorithm that defines a martingale sequence for
the set of colored paths. Following Azuma’s inequality [2], we therefore obtain that
if 1(7,P) = Q(logn), where n is the number of vertices in 7, then after the rounding
procedure the load of paths in P\ P’ is

(T, P\P) < (Te’ P

+o((T,P)),

with high probability. Now, we can apply the algorithm of [9] to color the paths in
P\P’ with SI(T P)yo (I(T", P)) additional colors. In total, we use at most

xr(T,P)+ @ +o((T,P))

colors. Since [(T, P) < x (T, P) < x(T,P), we obtain the following results.

Proposition 11 There exists a randomized 1.61 4 o(1)-approximation algorithm to
the path coloring problem in bounded degree trees.

Corollary 12 For any set of paths P on a tree T, it holds:

S5I(T, P
X(T.P) < 3 (. P) + ¥+ U(T. PY).

Note that using a much more sophisticated parameterized randomized rounding, a
(1.511 4+ o(1))-approximation randomized algorithm has been proposed in [5].

We can also apply similar arguments to bounded degree trees of rings to obtain a
2.22-approximation algorithm. For that, an optimal fractional coloring is computed
and randomly rounded as above. The remaining set of paths is colored as if it was a set
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of paths on the tree obtained by contracting each ring into an bi-directed edge. This
transformation obviously doubles the load of the set of path and over-constrained the
coloring. Following the same proof as above, such a coloring is bounded by x s +

22 4 o(l).

6 Further Application and Research

Our research in this paper was motivated by questions related to the design of wave-
length division multiplexing optical networks. Many applications of our techniques
to WDM networks can be foreseen, like in branch and bound methods, or in the design
of multifiber networks.

A recent paper exploits similar techniques in the more general settings of the ap-
proximate strong separation problem [20]. In this paper, applications to task and call
scheduling issues are discussed. Since then, more sophisticated rounding techniques
have improved the approximation ratios of integral coloring [5], but the main ideas
are the same.

The approximation results presented in this paper, as well as the best known in
the literature, show a gap between the cost of integral and fractional path coloring in
trees while there are no tight negative results.

We conjecture that this gap is small and that a 1 4 o(1) randomized approximation
may even exist. Indeed, randomized rounding strategies like those developed in [1]
or [5] but based on an optimal fractional coloring might be quite efficient. The main
challenge is then to characterize the distribution defined by the traces of optimal
fractional colorings, which is still open.

Appendix A: Description of the Doublons of a Reduced 3-Star

This appendix is dedicated to the description and counting of all the doublons and
half-doublons that are to be covered by a balanced coloring of reduced 3-star.

We define the type of (half-)doublon depending on the paths composing it and
give the number present on each vertex.

e A doublon of type:

A is 2 paths in a counter-clockwise circuit; ng : o2, nip:ale+y)
B is 2 paths in a clockwise circuit; ng : 82, ni2:BB+y)
C is two paths of length 1; ng : y>
D, is two parallel paths of length 2 not touching vertex n;;
Do | nip:(@+y)(B+y)
Dy | noa:ap
Dy | no2:ap
5. E;, i =1,2, is a path of length 1 and a path touching vertex n; in a counter-
clockwise circuit; ng : ay each
6. F;, i =1,2, is a path of length 1 and a path touching vertex n; in a clockwise
circuit; ng : By each.

b
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e A half-doublon of type:

1. A? is a path not touching vertex n; in a counter-clockwise circuit;
Ag ni2:a+y
A? np2:o
Ag noi:o

2. Bisa path not touching vertex n; in a clockwise circuit;
Bg ni2:B+y
Bl | no2:p
BY | no1:p

. Cg is a path of length 1 from ng to n.;

W

. Clisa path of length 1 from n, to ng.

Appendix B: Balanced Coloring of a Reduced 3-Star

This appendix is dedicated to the main step in the proof of Proposition 9. We show
that any reduced 3-star admits a path coloring with cost at most %’, where | = o +
B + y is the load of the set of paths. In the following we build a w-balanced coloring
where w = % and compute its cost.

B.1 Description of the Independent Sets

This coloring uses independent sets in order to cover the doublons defined and enu-
merated in Appendix A with weight 7 (1 — w for half-doublons). In particular, one
can note that building a w-balanced coloring requires the use of some non-maximal
sets.

The shape of the independent sets that we use is closely related to the characteri-
zation of the doublons they cover. Hence, their names are used interchangeably. The
actual weight that has to be put on each shape of independent set is described in the
following tables , as well as the type of (half-)doublons that they cover at each ver-
tex of the star. One can check that, given the choice of w = %, all the doublons and
half-doublons described in Appendix A are covered with the relevant weight.

The cost of the coloring is then the sum of the weights of all the independent sets
in these tables.

For the sake of readability, let us define

Ga =min{(1 —w)a, (1 —w)(a+y) —ay%}

and

Gp =min{(1 —w)B, (1 —w)(B+y) —ﬂy%}
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535

(1) Maximal independent sets

IS no | ni | n2 | Quantity IS no | ni | n2 | Quantity
ST PN
/ pi| |Di| ap2 \ Ds Bl
JI PN
;B\ E\| A|A)| ay¥ O/l)\\@ Ey|Al| A| ay¥
ﬂ\ R B B | py IK Bl BB pyo
T @Aﬁ
e

(2) Maximal independent sets obtained by combining these shapes

IS no | m | ny Quantity
A Ag | U=w)a+y)—ay¥ =Gy
B (I-w)B+y)—ByT—Gs
A
Do (ay +aB+By)T
X :
IS no | n1 | n2 | Quantity
/ll\ c? (1—w)y
/B\ c’ (I—w)y
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(3) Non-maximal independent sets

‘ IS no ‘ ni | no Quantity

/& AY A Ga
/l\ AV A A Ga
N

//I\\ﬂ A A? Ga
/I& AY AV (1—w)a—Ga
él\ Al (1—w)a — Gy
\ IS no | ni| m Quantity
/\ko BY B Gp
PN
Z\ B | B | B! Gg
P
A B B! Gs
A BY BY | (1-w)—Gg
/ B} (1-w)p—Gg
N

B.2 Setting w

The independent sets covering E; and F; doublons impose the two following con-
straints on w.

w w
ay =(I—w)a+y) and By =U-w)B+y)
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These constraints and o +y =1 — g imply w(l + 41(1 ﬁ)) <l

Moreover, aff < d 4’3) wh1ch gives w(l + 41‘3) <w( + 4) <1.
Therefore, setting w to 5 is always a valid solution.

B.3 Costof a %-Balanced Coloring

Using the quantities of independent sets given in the tables above (uniformly divided
between all possible instantiation of each independent set), all the doublons and half-
doublons are covered with the relevant weight. This gives a complete w-balanced
coloring of the star. The cost of this coloring is the total quantity of independent sets
that have been used.

e The cost of the maximal independent sets of table 1) is
w
Costi = —(e” + >+ y* +2ap + 20y +2By) — G4 — G
- %12 —Ga4—Gg

e The cost of the combination of independent sets in table (2) is

Costz = max{Z(l —w)y, %(ay +af+By)+ (A —w)(a+y)— ay%

_GA+(1—w)(ﬁ+V)_ﬂV%_GB}

- max{2(1 —w)y, %aﬁ FAd—w)a+B+2y)—Ga— GB}

e The cost of the non-maximal independent sets of table (3) is
Cost) =3G 4 +2((1 —w)a —Ga)+3Gp+2((1 —w)B—Gp)
=2(1-w)( —y)+Ga+Gs

e Therefore, using max{a, a + b} = a +max{0, b} with a = 2(1 — w)y, the total cost
is

Cost = Cost) + Costy + Costs
w
= 712—GA —Gp+2(1—w)( —y)+Ga+Gp+2(1 —w)y

+max{ —oz,8+(l—w)(oz+,3) GA—GB}

_wl+2(1—w)l+max{ —ot,B—l—(l—w)(oz—i—,B)
. w

—mm{(l—u))oz,(l—w)(a—i—y)—ozyT}

—min{(l —w)B. (1 —w)(B+y) —ﬂy%”
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=Q2-w) + max{O, %aﬂ —min{O, 1 —-w)y —ay%}

—min{o, (1—w)y —ﬂy%”
w w
=2—-w)l —i—max{O, 70[,3 + max{O,ayT -1 - w)y}
w
+max{0,ﬂy7 -1 - w)y}}
e Using —min{0, a} = + max{0, —a} we get
Cost =2 —w)l + %aﬂ —i—max{O,ozy% - (- w)y}

w
+max{0, ﬂyT -1 - w)y}

The cost of the coloring depends on the values of the two max. Three cases have
to be considered: none, one or both max is null.

L. Ifay 7 —(—w)y>0and By 7 — (1 —w)y > 0, using ab < %,weget

Cost = 2 —w)l + ~ap +ay— — (1 —w)y + By T = (1 = w)y

2
5(2—w)z+W+y(a+ﬂ)%—z(1—w)y

_ 2
s(2—w)z+%—l”+y(l—y>%—2(1—w>y

w w
5(2—w)l+ﬂ(12—2ly+y2)+wy—y27—2y+wy

wl wy wy? wy
<2Q-wl+———+—-—=-2 2
< w)—i-4 2 + m / y +2wy

w Sw 3wy
2—— ) —-yl2——+—=
5( ) y( 2 "l )

4
5

N

As we choose w = Z, we obtain

2
3wy <zl
41 5

7
Cost < =1 —
5
2. Ifay7 — (1 —w)y >0and By 7 — (1 —w)y <0, we get
w w
Cost = (2—w)l+7aﬂ+ay7 —(1—-w)y

=(2—w)l+%a(,3+y)—y(1—w)
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3.

I
5(2—w)l+%a(l—a)§(2—w)l+w7

<zl
-5

Ifay¥ — (1 —w)y <Oand By ¥ — (1 —w)y <0, we get
w
Cost = (2—w)l + 70!,3

w(l —y)?
<Q2-wl+ ——
<( w)l + m
<@ )H_wl

—w -
- 4

7

< —
-5

l

Cases (1), (2) and (3) put together show that any reduced 3-star admits a coloring

of cost upper-bounded by 7?1 This coloring is a %—balanced coloring.
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