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Abstract—Several studies exhibit that the traffic load of the
routers only has a small influence on their energy consumption.
Hence, the power consumption in networks is strongly related
to the number of active network elements, such as interfaces,
line cards, base chassis,... The goal thus is to find a routing that
minimizes the (weighted) number of active network elements used
when routing. In this paper, we consider a simplified architecture
where a connection between two routers is represented as a link
joining two network interfaces. When a connection is not used,
both network interfaces can be turned off. Therefore, in order
to reduce power consumption, the goal is to find the routing
that minimizes the number of used links while satisfying all the
demands. We first define formally the problem and we model it
as an integer linear program. Then, we prove that this problem
is not in APX, that is there is no polynomial-time constant-factor
approximation algorithm. Thus, we propose a heuristic algorithm
for this problem and we present a study on specific topologies,
such as trees and complete graphs, that provide bounds and
results useful for real topologies. We then exhibit the gain in terms
of number of network interfaces for a set of existing network
topologies: we see that for almost all topologies more than one
third of the network interfaces can be spared for usual ranges
of operation, leading to a global reduction of approximately 33
MWh for a medium-sized backbone network. Finally, we discuss
the impact of energy efficient routing on the stretch factor and
on fault tolerance.

I. INTRODUCTION

The minimization of ICT energy consumption has become

a priority with the recent increase of energy cost and the

new sensibility of the public, governments and corporations

towards energy consumption. ICT alone is responsible of 2%

to 10% (depending on the estimations) of the world consump-

tion [2]. In this paper, we are interested in the networking part

of this energy consumption, and in particular in the routing.

It is estimated that switches, hubs, routers account for 6 TWh

per year in the US [16].

Some recent studies [1], [14] exhibit that the traffic load of

the routers only has a small influence on their energy consump-

tion. Hence, the dominating factor is the number of switched-

on network elements: interfaces, platforms, routers,. . . In order

to minimize energy, we should try to use as few network

elements as possible.

Nevertheless, in most of networks, PoPs or even routers

cannot be turned off. As a matter of fact, first, they are the

source or destination of demands; second, they can be part

‡ A long version of this work with all the proofs and additive work has
been reviewed for this conference and can be found in [9].

of backup routes to protect the network against failures. For

this reason, we consider in this paper a simplified architecture

where a connection between two routers is represented by

a link joining two network interfaces. We can spare energy

by turning off the two network interfaces which are the

extremities of the link. The network is represented by an

undirected graph and, in that case, the goal in this simplified

architecture is to find a subgraph minimum in number of links
to route the demands. The contributions of this paper are the

following:

• We prove that there is no polynomial-time constant-factor

approximation algorithm for this problem, even for two

demands or if all links have the same capacity.

• We give explicit close formulas or bounds for specific
topologies, such as trees and complete graphs. They

provide limit behaviors and give indications of how the

problem behaves for general networks. To the best of

our knowledge, we are presenting in this paper the first

study of energy-efficient routing solutions on specific

topologies.

• We present heuristics to find close to optimal solutions

for general networks. These heuristics are validated by

comparison with theoretical bounds for specific instances

of the problem.

• We study the energy gain on a set of topologies of

existing backbone networks. We exhibit that at least one
third of the network interfaces can be spared for usual

range of demands.

• Finally, we discuss the impact of energy-efficient routing

on route length and fault tolerance.

A. Related Work

Measure of energy consumptions. Several measurement

campaigns of network energy consumption have been carried

out in the last few years. See for example [13], [14] and [1].

Their authors claim that the consumption of network devices

is largely independent of their load. In particular, in [1],

the authors were interested by routers’ energy consumption.

They observe that for the popular Cisco 12000 series, the

consumption at a load of 75% is only 2% more than at an

idle state (770W vs. 755W). In [14], the authors show through

experimentation that the power consumed depends on the

number of active ports. Explicitly disabling unused ports on a

line card reduces the device power consumption. The values
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obtained during experimentation show that the consumption

of a linecard 4-port Gigabit ethernet (100W) is approximately

one fourth the consumption of the global base system (430W).

Energy minimization. In [1], the authors model this problem

as an integer linear program. The objective function is a

weighted sum of the number of platforms and interfaces.

They show how much energy can be saved on different

networks with this model. However, they do not give intu-

itions, explanations, nor formulas for their results. In [12],

the authors propose a rerouting at different layers in IP-

over-WDM networks for energy savings while [18] study the

impact of the technology for energy efficient routing. In [15],

[11], [3], researchers proposed techniques such as putting idle

subcomponents (line cards, ports, etc.) to sleep, as well as

adapting the rate for forwarding packets depending on the

traffic in local area networks. In [4], the authors propose a

modulation of the radio configurations in fixed broadband

wireless networks to reduce the power consumption.

The remainder of the paper is organized as follows. In

Section II, we first present formally the problem and we model

it as an integer linear program. In Section III, we recall the

complexity of related problems and we prove that the problem

cannot be approximated within a constant factor. In Section IV,

we design heuristic algorithms and we prove also negative

results about greedy and probabilistic heuristic algorithms.

Then, specific topologies, such as trees or complete graphs,

are discussed in Section V. We show the good performance

of our proposed heuristic in terms of power consumption in

Section VI, and we show the impact of such energy-efficient

solutions on route lengths and network fault tolerance. Finally,

we discussed the impact of such algorithms for network

operators in Section VII.

II. PROBLEM MODELING

One way to reduce the network power consumption consists

in minimizing the number of turned-on network equipments.

We model a network topology as an undirected weighted graph

G = (V,E), where the weight ce represents the capacity of

edge e ∈ E. We represent the set of demands by D = {Dst >
0; (s, t) ∈ V × V, s �= t}, where Dst denotes the amount of

demand from s to t. A demand Dst has to be routed through

an elementary path from node s ∈ V to t ∈ V . A valid routing

of the demands is an assignment of such a path in G for each

Dst ∈ D such that for each edge e ∈ E, the total amount of

demands through e does not exceed the capacity ce. A classical

decision problem is to determine if there is such a routing of

the demands in G. Formally:

Definition II.1. Given an undirected weighted graph G =
(V,E) and a set of demands D, the ROUTING PROBLEM

consists in deciding if there is a valid routing of the demands
D in G.

For our purpose, we study a simplified network architecture

in which a link (A, B) connects two routers A and B through

2 network interfaces, one for A and one for B. The degree

of a node in the graph corresponds to the number of network

interfaces on the router. If a network interface is turned-off,

then the other interface at the extremity of the link is not useful

anymore and can also be turned-off. Therefore, the objective

of our problem is to minimize the number of active links in

the network. Formally:

Definition II.2. Given an undirected weighted graph G =
(V,E) and a set of demands D, the MINIMUM EDGES

ROUTING PROBLEM consists in finding a minimum cardinality
subset E∗ ⊆ E such that there is a valid routing of the
demands D in G∗ = (V,E∗).

In Section II-A, we present some simple instances of the

MINIMUM EDGES ROUTING PROBLEM and the corresponding

solutions. In Section II-B, we describe a linear program for

our problem.

A. Examples

Consider the graph G = (V,E) depicted in Figure 1

composed of 14 nodes and 15 edges. Integers on edges

represent the different capacities.

In Figure 1(a), there are two demands Ds1t1 = 10 and

Ds2t2 = 5. The solution E∗ for the MINIMUM EDGES

ROUTING PROBLEM is composed of |E∗| = 7 edges. Note

that the path from si to ti in G∗ = (V,E∗) is composed

of 5 edges, whereas the shortest path in G is composed of

4 edges, for i ∈ {1, 2}. Indeed these two shortest paths are

edge-disjoint whereas, in the optimal routing, the two paths

share 3 edges. This simple example shows that the shortest

paths routing does not give the optimal solution.

In Figure 1(b), there are also two demands but the amount

of demand from s1 to t1 is now equal to 12. This increase

considerably changes the optimal solution E∗. Indeed the

G = (V, E) Network topology with V the set of vertices (or
routers) and E the set of edges (or links).

Dst Volume of traffic of the demand from a source s ∈ V
to a destination t ∈ V . In section V, ∀(s, t) ∈ V ×
V,Dst = κ.

ce Capacity of the edge e ∈ E. In section V, ∀e ∈
E, ce = c.

λ Capacity/Demand ratio with c = λκ.
re Residual capacity of edge e.

OF Network Overprovisionning Factor. OF = 1 means
that the capacities ce of the edges imply the feasi-
bility of the routing of the demands.

fst
uv Flow on edge e = uv corresponding to the demand

Dst.
xe Binary variable which says if edge e is used or not.

l̄H(D) Average path length in the graph H given by a
feasible routing of the demands in D.

DPH(D) Average disjoint paths in the graph H for the de-
mands in D.

δ Degree of a vertice and δmax is the maximum
degree of the nodes in the graph.

dG(i, j) Shortest path distance between node i and j in graph
G. The notation d(i, j) can be used for shortcut.

Table I
SUMMARY OF NOTATIONS
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demand Ds1t1 must be routed through the shortest path

composed of 4 edges because of the edge of capacity 11. Thus

E∗ is composed of the two previous edge-disjoint shortest

paths of length 4. We get |E∗| = 8.

In Figure 1(c) and 1(d), we have the demands of the second

example plus Ds3t3 = 2. Because of the three edges of

capacity 16, only two demands can share these 3 edges. Two

optimal solutions are depicted in these figures, each one of cost

|E∗| = 9. In these optimal solutions, the 3 edges of capacity

16 support the demand Ds3t3 and one of the two demands

Ds2t2 (for Figure 1(c)) or Ds1t1 (for Figure 1(d)). The other

demand is routed through the shortest path.

B. Integer Linear Program

The MINIMUM EDGES ROUTING PROBLEM can be mod-

eled as a multicommodity integral flow problem in which the

objective function is the minimization of the number of edges.

We note fst
uv the flow on edge uv corresponding to the demand

Dst flowing from u to v. We note fuv =
∑

st∈V ×V fst
uv . For

each edge e ∈ E, we introduce a binary variable xe which

says if the edge e is used or not: xe = 0 if fuv + fvu = 0 and

xe = 1 if fuv + fvu > 0.

The Objective function is then min
∑

e∈E xe subject to:

Flow constraints: ∀(s, t) ∈ V × V , ∀u ∈ V ,

∑
v∈N(u)

fst
vu −

∑
v∈N(u)

fst
uv =

⎧⎨
⎩
−Dst if u = s,
Dst if u = t,
0 otherwise.

Capacity constraints: ∀e = (u, v) ∈ E,∑
d∈D

(
fd

uv + fd
vu

) ≤ xece.

The flow constraints are usual flow conservation. The ca-

pacity constraints state that for each edge e ∈ E, the total

amount of demands through e does not exceed the capacity

ce.

Table I summarizes the notations used throughout the paper.

III. IMPOSSIBILITY OF APPROXIMATION

The MINIMUM EDGES ROUTING PROBLEM presented in

this paper is a special case of different well known network

optimization problems: minimum cost routing [20], minimum

concave flow problem [10], minimum flow problem with step

cost functions [8]. In operation research, this problem can be

seen as a special case of the FIXED CHARGE TRANSPORTA-

TION PROBLEM [19], [5], where the cost of the flow unit on

an edge is zero. Note that this problem is NP-Hard [10]: the

number of possible subgraphs to test is strongly exponential

for most graphs. Moreover, even for a given subgraph (when

the set of edges to be used is fixed), the feasibility of a

multicommodity integral flow problem has to be assessed. This

simpler problem corresponds to the ROUTING PROBLEM and

it is known to be NP-complete even for two commodities [7].

Last, note that it is also the worst case of step-functions as

most of the approximations by linearization are very far from

a feasible solution.

We prove in [9] that the MINIMUM EDGES ROUTING

PROBLEM is not in APX (and so it is an NP-hard problem)

even for two special kinds of instances (Theorem III.1 and

Theorem III.2). It means that there is no polynomial-time

constant-factor approximation algorithms for the MINIMUM

EDGES ROUTING PROBLEM, unless P = NP .

Theorem III.1. The MINIMUM EDGES ROUTING PROBLEM

is not in APX even for two commodities.

Proof: This proof and all the following ones can be found

in [9].

Theorem III.2. The MINIMUM EDGES ROUTING PROBLEM

is not in APX even if each edge has a constant capacity c.

These two negative results motivate the design of heuristic

algorithms for the MINIMUM EDGES ROUTING PROBLEM in

Section IV and the study of theoretical bounds for particular

instances in Section V that give information for general

networks.

IV. HEURISTICS

As we have seen in the previous section, the MINIMUM

EDGES ROUTING PROBLEM is a problem difficult to solve

exactly and is even difficult to approximate to an insured factor

in general. Hence, the necessity of proposing good heuristic

algorithms for classical real network topologies. We propose

in this section two heuristics to find energy-efficient rout-

ing, namely LESS LOADED EDGE HEURISTIC and RANDOM

HEURISTIC. These heuristics are tested in Section VI.

Algorithm 1 presents a simple heuristic named LESS

LOADED EDGE HEURISTIC for our problem. We start from

the whole network, compute a feasible routing as described

in Algorithm 2 and try to remove in priority edges that are

less loaded. We believe that it is better to remove these edges

that are not involved in many shortest paths than overloaded

edges. For the routing, the demands are considered one by

one in random order. We compute a shortest path for the

demand with the metric ce

re
on edges is computed, where re

is the residual capacity on edge e when the previous demands

have been routed. Then, the residual capacity is updated for

each edge and the next demand is considered. This routing

allows a better load balancing of the demands in the network.

Note that finding a feasible routing can also be done with an

integer linear program for the ROUTING PROBLEM for small

topologies. Each time an edge is removed in the network, a

feasible routing is computed. If no routing exists, then the

removed edge is put back and we try to remove another edge

that has not been yet considered. The process of removing less

loaded edges is done until no more edges can be removed.

The second heuristic, RANDOM HEURISTIC, is used as

a measure of comparison during the simulations. The only

difference with the first one is that it selects uniformly at

random the links to be removed and not (necessarily) the less
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(a) Ds1t1 = 10, Ds2t2 = 5 → the
two routes of the optimal solution are
not shortest paths.

15 15 13 13

14

10

8879

16 16 16

8

11

1s

s2

t1

t2

(b) Ds1t1 = 12, Ds2t2 = 5 →
the optimal solution corresponds to a
shortest paths routing.
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(c) Ds1t1 = 10, Ds2t2 = 5,
Ds3t3 = 2. Ds1t1 and Ds3t3 are
routed through shortest paths.
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(d) Ds1t1 = 10, Ds2t2 = 5,
Ds3t3 = 2. Ds2t2 and Ds3t3 are
routed through shortest paths.

Figure 1. Four different solutions for the MINIMUM EDGES ROUTING PROBLEM.

loaded edges. The routing is performed in the same way as

for LESS LOADED EDGE HEURISTIC.

Algorithm 1 LESS LOADED EDGE HEURISTIC

Require: An undirected weighted graph G = (V,E) where

each edge e ∈ E has an initial capacity ce and a residual

capacity re (depending on the demands supported on e). A

set of demands D, each demand has a volume of traffic Dst.

∀e ∈ E, re = ce

Compute a feasible routing of the demands with Algo-

rithm 2

while Edges can be removed do
Remove the edge e′ that has not been chosen once, with

the smallest value
c(e′)
r(e′) .

Compute a feasible routing with Algorithm 2

If no feasible routing exists, then put back e′ in G
end while
return the subgraph G.

Algorithm 2 Feasible routing Heuristic for ROUTING PROB-

LEM

Require: An undirected weighted graph G = (V,E) where

each edge e ∈ E has an initial capacity ce and a residual

capacity re (depending on the demands supported on e). A

set of demands D, each demand has a volume of traffic Dst.

Sort the demands in random order

while Dst is a demand in D with no routing assigned do
Compute a shortest path SPst with the metric ce

re
on edges

Assign the routing SPst to the demand Ds,t

∀e ∈ SPst, re = ce −Dst

end while
return the routing (if it exists) assigned to the demands in

D.

These heuristics are evaluated through simulations in Sec-

tion VI and compared to the theoretical bounds given in

Section V and to the integer linear program described in

Section II-B

λ = 2 λ = 4 λ = 6 λ = 8
l̄H(D) = 1.0 l̄H(D) = 1.5l̄H(D) = 1.3 l̄H(D) = 1.6

DPH(D) = 4.0 DPH(D) = 2.0DPH(D) = 2.3 DPH(D) = 1.0

Figure 2. A Toy example, study of the complete graph with 5 vertices:
subgraphs with the minimum number of edges, with λ the capacity/demand
ratio, l̄H(D) average route length and DPH(D) the average number of edge-
disjoint paths between two nodes where D contains the all-to-all demands.

V. TOPOLOGY STUDY: EXTREME CASES

We present here the general framework of the studies of the

rest of this paper. We then study two extreme cases for general

networks, namely trees and complete graphs. They give us the

limit behavior of the real networks for different network loads.

We also derive an upper bound on the number of links that

can be spared in function of the demands.

A. Our Framework

In general networks, the demands vary during the life of

the networks, e.g. with the increase of the number of users,

with the development of new technologies, or, more simply,

according to the time of the day. The goal of the study in this

section is to see how much energy can be spared depending

on the resources available for the routing.

Given an undirected weighted graph G = (V,E) repre-

senting a network, each edge e ∈ E has the same amount of

capacity ce = c. We perform an all-to-all routing with demands

of volume, ∀(s, t) ∈ V × V,Dst = κ.

Definition V.1. The capacity/demand ratio λ expresses the
relation between the demand and the edge capacity: λ = c/κ.

Although an all-to-all routing is not a realistic scenario,

it allows to study the effects of such routing in extreme

conditions and also to keep the network connected. With

such scenario, we can certify that the topology given by our

algorithm will be suitable for more realistic traffic matrices.

Then, for each topology, we look at the number of links that

can be spared for different capacity/demand ratios λ.

A toy example. As an illustration, Figure 2 shows an optimal

solution H given by the integer linear program described in
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Section II-B for the complete graph G composed of 5 nodes

when the capacity/demand ratio λ varies from 2 to 8. When λ
equals 2, all the edges of G are needed to perform an all-to-all

routing with κ = 1. The larger the ratio is, the fewer network

interfaces are needed until we reach the star graph where no

more network interfaces can be removed. The two extreme

cases are the complete graph (λ = 2) and the tree (λ = 8).

The gain in terms of network interfaces can reach 60%, indeed,

only 4 edges (or 8 network interfaces) are needed instead of

10 (or 20). We also measure the impact of this energy-efficient

routing on delay and failure protection: for each different λ,

we give the average route length, l̄H(D), given by a feasible

routing of the all-to-all demands on the solution subgraph H ,

and the average number of edge-disjoint paths linking two

nodes, DPH(D). We see that, for this simple example, the

route length increases by 60% and that the number of disjoint

paths drops from 4 to 1 between the two extreme cases.

Note that an orthogonal way to conduct the study is to fix

the number of network interfaces/edges to be turned-on and to

compute the load of the network, that is the minimum capacity

needed to be able to satisfy the all-to-all routing:

Definition V.2 (Load of a Graph). Let G = (V,E) be an
undirected weighted graph and D the set of demands. The
load of G is the minimum over all routings (feasible flows F)
of the maximum load over all edges:

min
f∈F

max
e∈E

fe.

B. General Bounds

Path length lower bounds. The global capacity of the system

has to be larger than the global demand. The global flow is

minimum when all demands are following the shortest paths

between their source and destination. We note d(s, t) the

length of a shortest path between a source s and a destination

t. Hence, we have∑
e∈E

ce ≥
∑

st∈V 2;s �=t

d(s, t)Dst.

In particular, when all the edges have the same capacity c and

all the couples of nodes have the same demand κ, it becomes

c|E| ≥ κ
∑

st∈V 2;s �=t

d(s, t).

or equivalently

|E| ≥ 1
λ

∑
st∈V 2;s �=t

d(s, t).

Max flow min cut lower bounds. We present here a gener-

alized max flow min cut argument. For each subset S ⊆ V ,

we must have∑
e=uv∈E;u∈S,v∈S̄

ce ≥
∑

s∈S,t∈S̄

Dst +
∑

s∈S,t∈S̄

Dts,

where S̄ = V \ S. In particular, when all the edges have the

same capacity c and all the couples of nodes have the same

demand κ, it becomes

c|ESS̄ | ≥ 2κ|S||S̄|,
where |ESS̄ | the number of edges of the cut between S and

S̄. The load of a graph can thus be computed by looking at

the minimum cut of the network that supports the maximum

flow.

Minimum bisection cut. A particular example of cut is the min-

imum bisection cut denoted E′
SS̄

. The minimum bisection cut

is the minimum cut that divides the network into two (almost)

equal-sized regions S and S̄: |S| = �n
2 	 and |S̄| = 
n

2 �. The

set of edges corresponding to the minimum bisection cut will

support the demands exchanged between the nodes of the two

regions. This gives a minimum value for the load of the graph

which is for most practical networks a good approximation of

the real load as shown in Section VI.

In a graph with n vertices, with minimum bisection cut

E′
SS̄

, the load of the graph in case of all-to-all demand is at

least:
2κ

|E′
SS̄
| �

n

2
	
n

2
�.

C. Load of the Minimal Subgraph: a Spanning Tree

In the undirected case, the subgraph with the minimum

number of edges is a tree, as it is the smallest connected

subgraph, see e.g. Figure 2. This minimal configuration can

be attained when the capacity is larger than the load given in

Lemma V.1.

Lemma V.1. [Tree and Spanning Tree]
a) The load of a tree composed of n nodes is 2κv(n−v),

where v is the size of the larger branch incident to
the tree centroid.

b) In a graph with n nodes and of maximum degree
δmax, the load of a spanning tree is at least

2κ

⌈
n− 1
δmax

⌉(
n−

⌈
n− 1
δmax

⌉)
.

Note that the load of a (spanning) tree mostly depends on the

maximum node degree of the underlying graph. On a complete

graph where δmax = n− 1, the tree with the lowest load is a

star and its load is 2κ(n−1), to be compared with the load of a

path κ
n2

2 �, for which δmax = 2. Hence, networks with nodes

of large degrees tend to attain the minimum configuration for

smallest capacities, see Section VI.

D. Complete Graph - Bound on the Number of Spared Edges

We consider here the complete graph Kn composed of n
nodes and n(n− 1)/2 edges. This topology is the second ex-
treme case (all possible edges) of our problem. It corresponds

to the design problem of finding the best network satisfying

the load when all possible edges between nodes can be used.

The all-to-all routing is possible on the complete graph as

soon as the capacity/demand ratio λ is larger than 2. We also

256256



 0

 10

 20

 30

 40

 50

 60

 70

 2  3  4  5  6  7  8  9  10

LP

Bound

Capacity/Demand ratio λ

S
p

ar
ed

N
et

w
o

rk
In

te
rf

ac
es

(i
n

%
)

Figure 3. Number of spared edges on the complete graph with 5 nodes.
Bound of Lemma V.2 and integer linear program described in Section II-B.

have seen in the previous section that when λ is larger than

2(n − 1) the routing is possible on the star with only n − 1
edges, corresponding to the small fraction 2/n of the total

number of edges of the complete graph. But what happens

between these two capacities?

Lemma V.2. In a complete graph with n vertices, the all-to-all
routing uses at least

max
(

2κn(n− 1)
c + 2

, n− 1
)

edges, with c the capacity of the edges.

We validate in Figure 3 the results of the integer linear

program described in Section II-B given by CPLEX 10 for the

complete graph with 5 nodes. The figure shows that the lower

bound given in Lemma V.2 is close to the optimal solution.

The capacity/demand ratio λ varies between 2 and 8 as stated

before. For λ = 4, a gain of 30% of networks interfaces is

attained, leading to 7 active links instead of 10.

VI. RESULTS ON GENERAL NETWORKS

We present in this section the results of our proposed

heuristics on general networks. We study ten classical network

topologies extracted from SNDLib (http://sndlib.zib.de). In our

experiments, we explore how many network interfaces can

be spared for different ranges of overprovisioning factor. We

consider a range of capacity/demand ratio λ starting from

the smallest value λ1 allowing to route all the demands

(overprovisioning factor equals 1) to the value λtree allowing

to route on a minimal subgraph, that is a spanning tree

(overprovisioning factor equals λ1
λtree

). We also study the impact

of this energy-efficient routing on the route lengths and on

the network fault tolerance. To this end, we propose in [9] an

integer linear program finding spanners of the topology having

good stretch and two disjoint paths between all pairs of nodes.

We compare the number of edges of these spanners with the

one of the minimum subgraphs.

A. SNDLib Topologies
We studied ten classical real network topologies extracted

from SNDLib (http://sndlib.zib.de). These networks corre-

spond to US (Atlanta), European (Nobel EU, Cost266), or

single country (Nobel Germany, France) topologies. Their

sizes span from 15 to 54 nodes and from 22 to 89 edges, as

summarized in Table II. For these 10 topologies, we computed

energy efficient routings for different capacity/demand ratios

λ. We could only run the integer linear program for the

smallest network, Atlanta, for which the results are presented

in Figure 4. We see that LESS LOADED EDGE HEURISTIC

performs well, attaining the optimal value most of the time,

when the Random heuristic needs a larger λ to attain the same

value. As a matter of fact CPLEX already takes several hours

on Atlanta to solve the problem for one capacity/demand ratio.

We thus present the results found by the heuristic (which takes

only tens of ms) in Tables II and III.
Spared network interfaces. We give the percentage of spared

network interfaces in function of the overprovisioning factor

(OF ) in Table II (a). A factor of 1 means that we use the

minimum capacity/demand ratio necessary to route all the

demands (corresponding to the value λ1), when, e.g., a factor

of 2 means that we have twice the value λ1. Note that in most

today’s backbone networks overprovisioning is heavily used

as it is an efficient and easy way to provide protection against

failure: links are often used between 30 and 50 % of their

capacity.
First, note that on some of the ten topologies, as soon as

the routing is feasible (OF = 1), some network interfaces can

already be turned off (12% for Norway and Nobel EU). As a

matter of fact, in this case, the important edges of the network

(the edges in the minimum cut for example) are fully used,

but at the same time edges at the periphery are less used and

some can be spared. With an overprovisioning factor of two,

around one third of the edges can be spared (and even 53%

for the Pioro40 network). With larger factors (3 or 4), the gain

is not as important, but still some network interfaces can be

saved (e.g. 36% for Atlanta). We show in Table II (a), in the

2 last columns, the value of OF for which the tree is attained

together with the corresponding spared network interfaces in

percentage (SNE). The values are directly linked to the density

of the network. For example, Norway needs a factor of 4.71
(λtree = 4.71 × λ1) to reach the tree with 26 links (instead

of 51), sparing 49% edges. Hence, the larger the density, the

more the network interfaces that can be turned off.
To conclude, for all the studied networks between one third

and one half of the network interfaces can be spared for
usual overprovisioning factors. Furthermore, when the best

routing cannot be found by the integer linear program (large

topologies), the proposed heuristic found close to optimal
solutions.
Limit Configurations.

a) Full Network Topology: We report in Table II (b) the

minimum capacity/demand ratio λ1 for which the heuristic can

perform an all-to-all routing. As explained in Section V-B, λ1

depends on the minimum cut of the network. We reported
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Overprovisioning factor Tree

|V | |E| 1 2 3 4 OF %SNE

Atlanta 15 22 0% 32% 36% 36% 2.66 36%
New York 16 49 2.0% 59% 63% 67% 5.2 69%
Nobel Germany 17 26 0% 35% 39% 39% 2.75 39%
France 25 45 0% 42% 44% 47% 3.13 47%
Norway 27 51 12% 43% 47% 47% 4.71 49%
Nobel EU 28 41 12% 32% 34% 34% 2.76 34%
Cost266 37 57 3.5% 32% 35% 37% 3.68 37%
Giul39 39 86 0% 45% 50% 52% 8.25 56%
Pioro40 40 89 0% 53% 54% 55% 5.12 56%
Zib54 54 80 0% 30% 33% 33% 4.71 34%

(a) Gain of network interfaces (in %).

Simulations Values given by the bounds
λ1 λtree

λ1 λtree Cut Bound δmax Bound

38 101 3 38 4 88
15 78 12 11 11 56
44 121 4 36 5 104
67 210 7 45 10 132
75 354 6 61 6 220
131 362 3 131 5 264
175 644 4 171 4 540
85 702 11 70 8 340
153 784 7 115 5 512
294 1385 6 243 10 576
(b) Evaluation of the load given by the bounds.

Table II
(a) GAIN OF NETWORK INTERFACES (IN %) DEPENDING ON THE OVERPROVISIONING FACTOR AND (b) EVALUATION OF THE LOAD GIVEN BY THE

BOUNDS IN PREVIOUS SECTION WITH λ1 THE CAPACITY/DEMAND RATIO FOR OVERPROVISIONING FACTOR EQUALS 1 AND λtree FOR THE TREE.
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Figure 4. Percentage of spared network interfaces for the Atlanta network.

for each network the minimum bisection cut dividing the

network into two (almost) equal-sized regions. We computed

this minimum bisection cut with an integer linear program.

The bound on λ1 implied by the cut is given in the second

column of the table. We see that it gives a very good indication

of λ1 for most of the networks, even if the value is not tight,

as the heuristic does not always find the optimal solution. For

example, we see that the bound is tight for Atlanta, where

the minimum cut is of size 3 and splits the network in two

sub-networks of sizes 8 and 7. For Atlanta, and Nobel EU, the

capacity/demand ratios evaluated by the minimum cut bound

is equal to the values given during the simulations (λ1 = 38
for Atlanta and 131 for Nobel EU).

b) Spanning Trees: As explained in Section V

(Lemma V.1), the ratio λtree, for which we get a spanning

tree, depends on the network node degree. On the contrary to

regular network, such as the complete graph, the existence of

a spanning tree centered on the node of maximum degree with

equal-sized branch is not given. Hence, the bounds given in

Table II (b) are not tight. Nevertheless, we see that the node

degree still is a good indication on what can be achieved on

these networks. Graphs with low maximum degree attain the

best configuration for lower values of capacity/demand ratio

Overprovisioning
1 2 3 λtree

Atlanta 1.00 1.19 1.25 1.25
New York 1.01 1.24 1.26 1.32
Nobel Germany 1.00 1.11 1.18 1.18
France 1.00 1.10 1.12 1.16
Norway 1.02 1.17 1.18 1.25
Nobel EU 1.08 1.14 1.24 1.25
Cost266 1.04 1.11 1.19 1.32
Giul39 1.00 1.18 1.21 1.50
Pioro40 1.00 1.25 1.32 1.42
Zib54 1.00 1.02 1.07 1.11

(a) Route length

Overprovisionning
1 2 3

2.35 1.09 1.00
4.90 1.24 1.19
2.35 1.04 1.00
2.48 1.02 1.01
2.61 1.14 1.04
1.82 1.07 1.00
2.47 1.12 1.07
3.68 1.41 1.14
4.06 1.12 1.09
2.16 1.05 1.01
(b) Fault tolerance

Table III
IMPACT OF THE ENERGY-EFFICIENT ROUTING ON (A) THE ROUTE LENGTH

(AVERAGE MULTIPLICATIVE STRETCH FACTOR) AND ON (B) THE

NETWORK FAULT TOLERANCE (AVERAGE NUMBER OF DISJOINT PATHS).

λtree. For example, the network Atlanta has a maximum node

degree of 4 (the bound is 88) and λtree is 101, when for Zib54
λtree is 1385 for a maximum degree of 10 (the bound is 576).

B. Impact on the Network

We believe that network operators will implement energy

efficient routing only if the impact on other parameters is

limited. We discuss here the impact on the route lengths and

on the fault tolerance of our proposed heuristic.

Impact on the route lengths. When turning-off some compo-

nents in a network, we save some energy but, at the same time,

we route on longer paths. The multiplicative stretch is defined

as the ratio between the average route length in the new routing

divided by the average route length with the old routing (using

all the edges). Results for the SNDLib topologies are given in

Table III (a). A stretch of one correspond to the cases where

no edge could be spared and thus the routing is not affected.

We see that, as expected, the general trend is that when the

overprovisioning factor increases, the paths become longer.

Nevertheless we see that the impact on the route lengths is

limited. E.g., for the topology Zib54, the increase is 11% for

the extreme case when routing on a tree (for 34% of turned-off

network interfaces). In general, the increase for this extreme
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case spans from 11% to 50%, and in average 27%. For the

network with the larger impact, Giul39, the stretch is increased

by 50% for the tree, with a saving of 56% of the network

interfaces. We see that a saving of already 45% is attained for

OF = 2, leading to a route length increase of only 18%.

Impact on the fault tolerance. We measure in Table III (b) the

network fault tolerance as the average number of disjoint paths
linking two nodes. We see that the full network topologies have

an average number of disjoint paths between 1.82 and 4.90.

When routing on the tree, this number is of course 1 as only

one route exists, and this value is almost already attained for

OF = 3. The drop is quick as all the ten networks have a

number below 1.41 for OF = 2.

Discussion on Technology. When there is a failure between

two nodes, it may be necessary to turn on some network

interfaces to compute a new routing for some demands. Hence,

this study show that the use of such energy efficient solutions

is conditioned by the existence of technologies allowing a
quick switching on of network interfaces. Network interfaces

companies are currently working on designing this kind of

interfaces [17].

We propose in [9] a solution for the routing with fault-

tolerant spanners, such that there are two disjoint paths per

demand. Therefore, the impact of links failures on the network

will be reduced because a protection path with enough capacity

will be available.

VII. CONCLUSION AND PERSPECTIVES

In this work, we present through a simplified architecture

the problem of minimizing power consumption in networks.

We show non-approximation results. The simulations on real

topologies show that the gain in energy is significant when

some network interfaces can be turned-off.

• At least one third of the network interfaces can be spared
for usual range of demands.

• For a medium-sized backbone network, this leads to a re-
duction of power consumption of approximately 33MWh

per year (for Cost266 with 37% of spared interfaces).

For this estimation, we consider a scenario where the

turned-off interfaces of our simplified architecture are 4-

port Gb Ethernet linecards. We believe it corresponds to

a reasonable capacity for backbone networks. We use

the consumption values given in [1]: 100W for these

linecards.

• The route lengths increase, but not too much: in average

27% for almost all studied topologies.

• Fault tolerance can be achieved with the use of fast
switching-on technologies or by adding disjoint path
constraints to the problem so that the network remains

γ-connected, allowing a tolerance of γ − 1 failures.

• The bounds for specific topologies are useful for general

networks to evaluate the overprovisioning factors needed

for such energy-efficient solutions.

As part of future work, we plan to study a detailed cost

function for a more complex router architecture. Moreover, we

will carry on lab experiments on small network topologies to

measure in practice the performance of the proposed energy-

efficient routing.
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