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a b s t r a c t

A new class of algorithms to estimate the cardinality of very large multisets using constant
memory and doing only one pass on the data is introduced here. It is based on order
statistics rather than on bit patterns in binary representations of numbers. Three families of
estimators are analyzed. They attain a standard error of 1

√
M
usingM units of storage, which

places them in the same class as the best known algorithms so far. The algorithms have a
very simple internal loop, which gives them an advantage in terms of processing speed. For
instance, a memory of only 12 kB and only few seconds are sufficient to process a multiset
with several million elements and to build an estimate with accuracy of order 2 percent.
The algorithms are validated both by mathematical analysis and by experimentations on
real internet traffic.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Problem. A multiset is a set where each element can appear several times. The cardinality n of the multiset is the number of
distinct elements, while the size N of the multiset is the total number of elements, counting the repetitions. An important
issue in computer science is to estimate the cardinality of a multiset having a very large size. This problem arose in the
1980s, motivated by optimizations of classical algorithmic operations on data bases (union, intersection, sorting, etc.). As
the data sets to be measured have mostly a very large size N , far beyond the RAM capacities, a natural requirement is to
treat the data in one pass using a simple loop, and with a small auxiliary memory (constant or logarithmic in N). More
recently, in the past decade, the problem of counting distinct elements has appeared as a crucial algorithmic operation in
the context of networking with the development of networks of very large capacity. Typically, the elements are packets,
each packet belonging to a flow (also called connection) identified by a source address and a destination address. Estimating
the number of distinct flows in a data stream has many applications in network monitoring and network security, see the
detailed survey of Estan et al. [7]. For instance, one can count the number of distinct flows on a traffic to detect Denial of
Service attacks,where abnormallymany distinct connections are opened in a short period of time. Other applications include
the data mining of language texts [2,3] or biological data [16,17]. The crucial point in solving the problem, first developed
by Flajolet and Martin [10] in their algorithm Probabilistic Counting, is to relax the constraint of giving the exact number
of distinct values in the multiset. For most applications, a probabilistic estimate of nwith good precision is sufficient.
The three families of algorithms. In this article, new estimators, based on order statistics, are introduced to solve the problem
of estimating the cardinality of very large multiset while using constant memory and performing a single pass on the data. In
addition, no assumption is made on the structure of the data.
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Weassume that a hash function hmapping an element to a real value that ‘‘looks like’’ uniformly distributed in the interval
[0, 1] is given (see the detailed study of Knuth [19]). Let S = (e1, . . . , eN) be a set of elements and let n be the number of
distinct elements in S. Under the assumption on the hashed function h, andwithoutmaking any assumption on the nature of
the repetitions, the set (h(e1), . . . , h(eN)) of hashed values can be considered as built from n real values taken independently
uniformly at random in [0, 1], and then replicated and permuted in an arbitrary way. Such a set of uniform random values in
[0, 1] with arbitrary replications and order of appearance is called an ideal multiset. Thus, estimating the number of distinct
elements in a real multiset without making any assumptions on the repetitions amounts to estimating the cardinality of an
ideal multiset.
The crucial idea is then that the minimum value in an ideal multiset does not depend on the replication structure of the

data nor on the ordering, and gives an indication on the number n of distinct values of the multiset (basically, the minimum
of n independent uniform values on [0, 1] has more chances of being small if n is large). More precisely, the expectation of
the minimum is 1

n+1 . To obtain an estimate of n, the most natural way would be to invert this minimum, but the inverse
happens to have an infinite expectation. To overcome this difficulty, our solution is to build estimates using the inverse
of the kth minimum – instead of the first minimum – composed with a sublinear function, as logarithm or square root. It
gives three families of estimates of n: the Inverse, Logarithm and Square Root Families. The estimates are then combinedwith
a stochastic averaging process, as introduced by Flajolet and Martin in [10]. Stochastic averaging consists in simulating the
effect of m experiments on the multiset and then averaging an observable over the m experiments to obtain an estimate
with a good precision.

Related work. There has been substantial work on approximate query processing in the database community, see [14,13,5].
In [20]Whang, Zanden and Taylor introduced Linear Counting. The principle is to distribute hashed values into buckets and
use the number of hit buckets to give an estimate of the number of values. A drawback of this method is that memory is still
linear (but with a small constant). To extend it to very large data sets, Estan, Varghese and Fisk proposed in [7] a multiscale
version of this principle in their Multiresolution Bitmap algorithm. The algorithm keeps a collection of windows on the
previous bitmap. Its estimate has a standard error of 4.4/

√
m while usingm words of memory. Another way that has been

proposed to estimate cardinality is sampling. The idea is to keeponly a fraction of the values that have been read. For instance,
inWegner’s Adaptive Sampling this fraction is dynamically chosen in an elegant way. The algorithm has been described and
analyzed by Flajolet in [8] and its accuracy is 1.20/

√
m. The Probabilistic Counting algorithm of Flajolet andMartin, in [10],

uses bit patterns in binary representations of numbers. It has excellent statistical properties with an error close to 0.78/
√
m.

In [6], the LogLog Counting algorithm of Durand and Flajolet starts from the same idea but uses a different observable. The
standard error is 1.30/

√
m, but the m words of memory here have a size of order log log n and not log n. The same is true

for the algorithm HyperLogLog, introduced in [9], based on the harmonic mean rather than the geometric mean, which
attains a precision of 1.04/

√
m, giving it the best known ratio precision over memory. Finally in [1] the authors present

three algorithms to count distinct elements. The first one uses the kth minimum and corresponds basically to the Inverse
Family estimator. The authors prove that this algorithm (ε, δ) approximates n using O(1/ε2 logm log(1/δ)) bits of memory
and O(log(1/ε) logm log(1/δ)) processing time per element. In this paper, we generalize this idea by introducing new and
more efficient families of estimates and provide a precise analysis. A short version of this work can be found in [15]. Finally,
in [4], Chassaing and Gerin propose another family of estimators and prove its optimality using information and estimation
theory.

Results. The three families of estimators are presented in Section 2 and analyzed in Section 4. Themain results are presented
before the analysis in Section 3. We found asymptotically unbiased estimates of n for the three families and give their
standard error in Theorem 1. We then compare the trade-offs between accuracy andmemory requirement for these families
in Theorem 2. We show that, with a fixed amount of memory, M , the precision improves when k increases and that better
estimates are obtained when applying sublinear functions. Nevertheless, the three families have an optimal trade-off of
1/
√
M . In addition, we propose a best practical estimate, Mincount. Using an auxiliary memory of only 12 kB, it succeeds

in estimating with accuracy of order 2 percent the cardinality of a multiset with several million elements. Note that the
algorithms can be adapted to operate on sliding windows [12].

Validation and experimentations. The estimates of the three families are validated using trace files of different kinds
(e.g. English texts or router traces) and sizes. The relative error of the estimates is shown to be close to what is expected
from theory (see Fig. 4 in Section 5). We also show that the algorithms are very fast: our implementation takes only few
seconds to process files with millions of elements and is only 3 to 4 times slower than the very simple unix command cat
-T, that just replaces the tab characters of a file by ˆI (see Fig. 6). This is of critical value in the context of in-line analysis of
internet traffic where we have only a few tens of machine operations at our disposal to process a packet. In Section 5.4, we
show how the algorithmMincount can be used to detect some attacks on a network, e.g. the spreading of the worm Code
Red.

2. Three families of estimates

In this section, we present three families of algorithms, the Inverse, Square Root and Logarithm Families, to estimate the
cardinality of very large multisets.



408 F. Giroire / Discrete Applied Mathematics 157 (2009) 406–427

Fig. 1. Pseudo-code of the three families of estimates.

Construction of estimators based on the minimum M . Recall from the previous section that we assume at our disposal a hash
function hmapping any element to a real value that ‘‘looks like’’ uniformly distributed in the interval [0, 1]— the construction
of this hash functionmaybebased onmodular arithmetic as discussed byKnuth in [19]. Given anymultiset,we can transform
it to an ideal multiset (defined previously) by using such a hash function on the elements in the multiset. Thus, the problem
of estimating distinct items in a multiset is equivalent to estimating the cardinality of an ideal multiset. To estimate the
number of distinct elements, denoted by n, of an ideal multiset, we consider its minimum,M . An important remark is that
theminimum of a sequence of numbers is foundwith a single pass on the elements and that it is not sensitive to repetitions.
The density of the minimum of n uniform random variables over [0, 1] is P(M ∈ [x, x+ dx]) = n(1− x)n−1dx. So, for n ≥ 1,
its expectation is

E[M] =
∫ 1

0
x · n(1− x)n−1dx =

1
n+ 1

.

M is roughly an estimator of 1/n. Our hope is now to be allowed to take 1/M as an estimate of n. But

E
[
1
M

]
=

∫ 1

0

1
x
· n(1− x)n−1dx = +∞.

Unfortunately, the integral does not converge near 0 and is unbounded. In order to obtain an estimate of nwe use indirectly
the minimumM in the following ways.

(1) Instead of using the inverse function alone, we compose it with a sublinear function f , e.g. the (natural) logarithm and
the square root.

(2) Instead of using the first minimum, we take the second, third or more generally the kth minima.

Thus we obtain three families of estimates namely the Inverse Family, the Square Root Family and the Logarithm Family. We
talk about families as we have one estimator per value of k. Their pseudo-code is given in Fig. 1.
Simulating m experiments. The precision of the algorithms is given by the standard error of their estimate ξ , denoted by SE[ξ ]
and defined as follows

SE[ξ ] :=
σ(ξ)

n
,

where σ(ξ) denotes the standard deviation of ξ . To improve the precision of the algorithms, we would like to average over
several similar experiments, as it is well known that the arithmeticmean ofm i.i.d. random variableswith expectationµ and
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standard deviation σ has same expectationµ but a standard deviation scaled down by 1/
√
m. Doingm experiments involves

using m different hashing functions. But hashing all the elements m times is particularly time consuming and building
m independent hashing functions is not an easy task. To avoid these difficulties we use a stochastic averaging process, as
introduced by Flajolet and Martin in [10]. Stochastic averaging consists in simulating the effect of m experiments on the
multiset while using a single hash function and then averaging an observable over the m experiments. The principle is to
distribute the hashed values amongm different buckets. That is done by dividing [0, 1] intom intervals of size 1/m. A hashed
value x falls in the ith bucket if i−1m ≤ x <

i
m . Our algorithms keep the kth minimum of the ith bucket, denoted by M

(k)
i in

the analysis, for i from 1 to m (note that the M(k)
i have to be rescaled by M

(k)
i ← m · (M(k)

i −
i−1
m ) to produce elements in

the unit interval). A precise estimate is then built by averaging estimates built from the minimum of each bucket, as seen in
Section 3.

3. Results of the analysis of the three families of estimates

The main results of the analysis are presented here. The analysis itself and all the proofs can be found in Section 4. We
found asymptotically unbiased estimates of n for the three families and give their standard error in Theorem 1. Note that all
results for the Inverse and the Square Root family are given for k ≥ 3.

Theorem 1. Consider the algorithms of the three families built on the kth minimum (k ≥ 3) using a stochastic averaging process
simulating m experiments and applied to an ideal multiset of unknown cardinality n.

(1) The estimates returned by the Inverse Family, ξ1, the Square Root Family, ξ2, and the Logarithm Family, ξ3, defined respectively
as

ξ1 := (k− 1)
m∑
i=1

1

M(k)
i

,

ξ2 :=
1(

1
k−1 +

m−1
(k−1)!2

0(k− 1
2 )
2
)
 m∑
i=1

1√
M(k)
i

2 and

ξ3 := m ·

(
0(k− 1

m )

0(k)

)−m
· e
−
1
m

m∑
i=1
lnM(k)i

,

are asymptotically unbiased in the sense that, for i = 1, 2, 3

E[ξi] ∼
n→∞

n.

(2) Their standard error, defined as 1n
√

V(ξi), satisfies

SE[ξ1] ∼
n→∞

C1(m, k) :=
1

√
k− 2

·
1
√
m
,

SE[ξ2] ∼
n→∞

C2(m, k) :=

 1
m2

(
1
k− 1

+
(m− 1)0(k− 1

2 )
2

(k− 1)!2

)−2

·

(
m

(k− 1)(k− 2)
+
8
(m
2

)
0(k− 3

2 )0(k−
1
2 )

(k− 1)!2

+
6
(m
2

)
(k− 1)2

+
36
(m
3

)
0(k− 1

2 )
2

(k− 1)(k− 1)!2
+
24
(m
4

)
0(k− 1

2 )
4

(k− 1)!4

)
− 1

1/2 ,
SE[ξ3] ∼

n→∞
C3(m, k) :=

√√√√(0(k− 1
m )

0(k)

)−2m
·

(
0(k− 2

m )

0(k)

)m
− 1,

where 0 is the Euler Gamma function defined in Section 4.1.

Note that the equivalents of the standard errors – C1(m, k), C2(m, k) and C3(m, k) – do not depend on n. They are studied
form large in Lemma 1 — the proof is given in Section 4.6.
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Fig. 2. Constants of the precision of the three families of estimates for different values of k.

Lemma 1. When m is large, the equivalents of the standard errors of the estimates of the three families, C1(m, k), C2(m, k) and
C3(m, k), defined in Theorem 1, are equivalent to

C1(m, k) ∼
m→∞

1
√
k− 2

·
1
√
m
,

C2(m, k) ∼
m→∞

2 ·

√√√√ 1
k− 1

(
0(k)

0(k− 1
2 )

)2
− 1 ·

1
√
m
,

C3(m, k) ∼
m→∞

√
ψ ′(k) ·

1
√
m
,

where 0 and ψ ′ are the Euler Gamma and Trigamma functions defined in Section 4.1.

We now want to compare the algorithms when m is large (we want precise estimates) with respect to the trade-off
between precision andmemory. Thememory used by the algorithms is that required to store theminimums, i.e., km floating
numbers for an estimate built with the kth minimum. The metric here is the precision defined as the relative error of the
estimates expressed as a function of the memory, notedM (=km). We have:

Theorem 2 (Precision of the Algorithms). The precision of the three families of estimates, P1(M, k), P2(M, k) and P3(M, k),
given by

P1(M, k) :=

√
k
k− 2

·
1
√
M
,

P2(M, k) := 2 ·

√√√√√k
 1
k− 1

(
0(k)

0(k− 1
2 )

)2
− 1

 · 1√
M
,

P3(M, k) :=
√
k · ψ ′(k) ·

1
√
M
,

satisfy, for a fixed M,

(1) P1(M, k), P2(M, k) and P3(M, k) are decreasing functions of k;
(2) when k is large, for i = 1, 2, 3,

Pi(M, k) →
k→∞

1
√
M
.

The proof is given in Section 4.7. The precisions of the three families can be written asPi(M, k) = Ci(k) · 1√M , for i = 1, 2, 3.
Note that Ci(k) does not depend onM . Fig. 2 gives these constants for different values of k. Fourmain results can be extracted
from the theorem.
First result. As expressed in (1), for the three families, the precision improves as k increases. For example, for the Logarithm
Family, we have P3(M, 1) = 1.28/

√
M , P3(M, 2) = 1.14/

√
M and P3(M, 3) = 1.09/

√
M .
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Second result. As expressed in (2), there exists an optimal trade-off between precision and memory for the three families: a
precision of 1/

√
M using amemory ofM floating numbers. For practical purposes, we compare the constants of the precision

of the three families of estimate and choose a best practical estimate.
Third result. Though the three families have the same asymptotical precision, we observe that, for all reasonable practical
values of k, the precision of the estimate of the Logarithm Family is better than the precision of the estimate of the Square
Root Family which is better than the one of the Inverse Family (see Fig. 2), that is, for all 3 ≤ k ≤ 1000,

P1(M, k) ≥ P2(M, k) ≥ P3(M, k).

For example, in the case of the third minimum, we have P1(M, 3) = 1.73/
√
M , P2(M, 3) = 1.26/

√
M and P3(M, 3) =

1.09/
√
M . More values can be found in the table of Fig. 2. It means that better estimates are obtained when we apply

sublinear functions, such as square root or logarithm.
Fourth result: Best practical estimate. In practice, the optimal efficiency is reached quickly. As amatter of fact, the constant for
the estimate of the Logarithm Family using only the third minimum is 1.09. We consider this estimate as the best practical
estimate. An optimized implementation of an algorithm using this estimate, Mincount, is used in Section 5.3 to study the
execution times and in Section 5.4 to analyze Internet traffic traces. Note that, as the best efficiency is attained quickly,
the introduction of other families of estimates built with ‘‘more’’ sublinear functions, e.g. ln2, would not provide enough
practical gains in terms of precision.

4. Analysis of the three families of estimates

The proofs of the results enounced in Section 3 are given here. The main part of this section is the proof of Theorem 1
which shows that the estimates are asymptotically unbiased and gives their standard error. The steps of the analysis are
presented in Section 4.2. The proof is then given in Section 4.3 for the Inverse Family, in Section 4.4 for the Logarithm Family
and in Section 4.5 the Square Root Family. The computations strongly rely on special functions; classical definitions and
results are first recalled in Section 4.1. The section ends with the proofs of Lemma 1 (analysis of the standard error for large
m) and Theorem 2 (comparison of the precision of the estimates) in Sections 4.6 and 4.7.

4.1. Preliminaries: Special functions

The computations of the expectations and the standard errors of the estimates intensively use some special functions, in
particular the Euler Gamma function, defined as

0(z) :=
∫
∞

0
tz−1e−tdt,

and the Euler Beta function, defined as

B(α, β) :=

∫ 1

0
tα−1(1− t)β−1dt.

These two functions and their derivatives are intimately related as

B(α, β) =
0(α)0(β)

0(α + β)

and
d
dα

B(α, β) = B(α, β)(ψ(α)− ψ(α + β)),

where ψ is the logarithmic derivative of the Gamma function, also called Digamma function. This last function is defined as

ψ(z) =
d
dz
ln0(z) =

0′(z)
0(z)

.

The Digamma function ψ is related to the Harmonic Sum Hn :=
∑n
k=1

1
k by

ψ(n) = Hn−1 − γ ,

where γ is the Euler constant defined as limn→∞(Hn − ln n).
The derivative of the function ψ , denoted by ψ ′, is called Trigamma function and is also used in this paper. One of its

interesting property is that

ψ ′(z) =
∞∑
k=0

1
(z + k)2

.

In particular one may compute ψ ′(1) = π2/6.
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4.2. Method of analysis

Recall that the stochastic averaging process presented in Section 2 distributes the hashed values into m buckets. In the
following, Ni denotes the random variables giving the number of values falling into bucket i, for i = 1, . . . ,m. A distribution
of the values is given by (N1, . . . ,Nm) = (n1, . . . , nm) with

∑m
i=1 ni = m. We use the notations N̄ and n̄ for the tuples

(N1, . . . ,Nm) and (n1, . . . , nm).
The analysis of the estimates (consisting of the proof of the main result, Theorem 1) is done in two steps. In the first step,

we consider a simplification of the problem and the computations are done under the following hypothesis:

Hypothesis 1 (Equidistribution Hypothesis). Under the equidistribution hypothesis, the same number n/m of hashed values
falls into each of them buckets, that is Ni = n/m, for i = 1, . . . ,m.

In the second step of the analysis, we prove that the same asymptotic results hold without this hypothesis, using the
following determinization lemma. Note that, in this case, the hashed values are distributed into the buckets according to
a multinomial law, i.e.

P[N̄ = n̄] =
1
mn

(
n

n1, . . . , nm

)
.

In the following, we note
( n
n̄

)
for the multinomial

(
n

n1,...,nm

)
.

Lemma 2 (Determinization of Random Allocations). Let f be a function of n and let Sn be defined by

Sn :=
∑

n1+···+nm=n

1
mn

(
n

n1, . . . , nm

)
fn1 · · · fnm ,

with the notation fn := f (n).
If the function f satisfies

– f is of growth at most polynomial;
– f is of slow variation (in the sense of the following definition, Definition 1),

then, for fixed m, there exists a function ε such that ε(n) →
n→∞

0 and

Sn = (fn/m)m(1+ O(ε(n))).

Definition 1 (Function of Slow Variation). A function f of n is of slow variation if there is a function ε such that ε(n)→ 0 as
n→∞ and if, for all j ≤

√
n ln n,

fn+j = fn(1+ O(ε(n))).

Proof (Determinization Lemma). The idea of the proof is to show that the terms that contribute to the sum Sn are in a central
domain defined below.

Definition 2 (Central Domain and Periphery). A tuple n̄ is said to be inside the Central Domain CD if, for any i,

n
m
−

√
n
m
ln
n
m
≤ ni ≤

n
m
+

√
n
m
ln
n
m
.

A tuple outside of CD is said to be in the Periphery P .

We have the following result.

Proposition 1. When n goes to infinity, we have, for a fixed m,

P[n̄ ∈ CD] =
∑
n̄∈CD

1
mn

(
n

n1, . . . , nm

)
→
n→∞

1

P[n̄ ∈ P] =
∑
n̄∈P

1
mn

(
n

n1, . . . , nm

)
= O(exp(−C · (log n)2)) →

n→∞
0,

where C is a positive constant.



F. Giroire / Discrete Applied Mathematics 157 (2009) 406–427 413

Proof. It is sufficient to prove the second inequality as an allocation n̄ is either in P or in CD. n̄ is in the periphery if there is
an i ∈ N, 1 ≤ i ≤ m, such that

ni 6∈
[
n
m
−

√
n
m
ln
n
m
,
n
m
+

√
n
m
ln
n
m

]
.

So,

P[n̄ ∈ P] ≤ mP
[
n1 6∈

[
n
m
−

√
n
m
ln
n
m
,
n
m
+

√
n
m
ln
n
m

]]
.

n1 is the sum of n random variables following a Bernoulli distribution of parameter 1/m. The Hoeffding inequality gives,
∀t > 0,

P(|n1 − E[n1]| ≥ t) ≤ 2 exp
(
−
2t2

n

)
.

For t =
√
n
m ln

n
m , we have

P
(∣∣∣n1 − nm ∣∣∣ ≥

√
n
m
ln
n
m

)
≤ 2 exp

(
−
2
n
·

(√
n
m
log

( n
m

))2)

= 2 exp
(
−
2
m
·

(
log

( n
m

))2)
.

Hence

P[n̄ ∈ P] = O(exp(−C · (log n)2)) →
n→∞

0,

with C a positive constant. This ends the proof of Proposition 1. �

We now have to find an equivalent of Sn. Let sn denote sn(n̄) := 1
mn
( n
n̄

)
fn1 · · · fnm so that we may write Sn =∑

n1+···+nm=n
sn(n̄).

Study of Sn in the Central Domain. As f has slow variation, there exists ε(n/m) such that ε(n/m) →
n→∞

0 and

∀j ≤
√
n
m
ln
n
m
, fn/m+j = fn/m(1+ O(ε(n/m))).

Hence∑
n̄∈CD

sn(n̄) =
∑

∑
li=0,|li|≤

√
n
m ln(

n
m )

1
mn

(
n

n/m+ l1, . . . , n/m+ lm

)
(fn/m)m(1+ O(ε(n/m)))m

= (fn/m)m(1+ O(ε(n/m)))m
∑
CD

1
mn

(
n

n/m+ l1, . . . , n/m+ lm

)
.

Proposition 1 gives∑
n̄∈CD

sn(n̄) ∼
n→∞

(fn/m)m(1+ O(ε(n))).

Study of Sn in the Periphery. As f has at most a polynomial growth, there exists a ∈ N such that fn ≤ na. Hence∑
n̄∈P

sn(n̄) =
∑
P

1
mn

(n
n̄

)
fn1 · · · fnm ≤ (n

a)m
∑
n̄∈P

1
mn

(n
n̄

)
.

Proposition 1 gives∑
n̄∈P

sn(n̄) = nam · O(exp(−C(ln n)2)) →
n→∞

0.

Hence we have

Sn = (fn/m)m(1+ O(ε(n))),

with ε(n)→ 0 as n→∞. This ends the proof of Lemma 2. �

This lemma is easily extended to the cases where one has a polynomial expression (with polynomial g) of t ≤ m different
functions (f (1)n1 · · · f

(t)
nt )— instead ofm identical functions. The most general variant is given in the following lemma—which

is used in the analysis of the Square Root Family in Section 4.5.
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Lemma 3 (Variant of the Determinization Lemma). Let f (1), . . . , f (t) be t different functions of slow variation and of growth at
most polynomial and let g be a polynomial. Let Sn be defined by

Sn :=
∑

n1+···+nm=n

1
mn

(
n

n1, . . . , nm

)
g(f (1)n1 , . . . , f

(t)
nt ).

Then, for fixed m, there exists a function ε such that ε(n) →
n→∞

0 and

Sn = g(f
(1)
n/m, . . . , f

(t)
n/m)(1+ O(ε(n))).

4.3. Analysis of the Inverse Family

The proof of Theorem 1 is given here for the Inverse Family. The proof is done in two steps, as explained in Section 4.2.
In the first part of the analysis, the result is proved for a simplification of the problem (equidistribution hypothesis,
Hypothesis 1). In the second part, using the determinization lemma, Lemma 2, we show that the same asymptotic results
hold for the general problem.

4.3.1. First step of the proof
Unbiased estimate of n. The goal is to show here that ξ1, defined as ξ1 := (k−1)

∑m
i=1

1
M(k)i
, for k ≥ 3, is an asymptotically

unbiased estimate of n. We have

E[ξ1] = (k− 1)
m∑
i=1

E

[
1

M(k)
i

]
.

The density of the kth minimum of n random values chosen in [0, 1] according to a uniform distribution is

P(M(k)
∈ [x, x+ dx]) = k

(n
k

)
xk−1(1− x)n−kdx.

Hence we have:

E
[
1
M(k)

]
=

∫ 1

0

1
x
k
(n
k

)
xk−1(1− x)n−kdx = k

(n
k

)
B(k− 1, n− k+ 1)

= k
(n
k

) 0(k− 1)0(n− k+ 1)
0(n)

= k
n!

(n− k)!k!
(k− 2)!(n− k)!

(n− 1)!

=
n
k− 1

.

Note that the expectation would be infinite for k = 1. Under the equidistribution hypothesis, n/m hashed values fall in each
bucket. Hence we have

E[ξ1] = (k− 1)
m∑
i=1

1
k− 1

n
m
= n,

that is, ξ1 is an unbiased estimate of n.

Standard error. What is the standard error of this estimate? We noteM1 :=
∑m
i=1

1
M(k)i
. We have ξ = (k− 1)M1.

E[M2
1] = E

( m∑
i=1

1

M(k)
i

)2 = E

 ∑
1≤i≤m

(
1

M(k)
i

)2
+ 2 ·

∑
1≤i<j≤m

1

M(k)
i

1

M(k)
j

 .
By linearity of the expectation, we have

E[M2
1] =

∑
1≤i≤m

E

( 1

M(k)
i

)2+ 2 · ∑
1≤i<j≤m

E

[
1

M(k)
i

1

M(k)
j

]
.

As theM(k)
i are i.i.d., we obtain



F. Giroire / Discrete Applied Mathematics 157 (2009) 406–427 415

E[M2
1] = m · E

( 1

M(k)
1

)2+ 2 (m
2

)
· E

[
1

M(k)
1

]2
.

E
[

1
(M(k))2

]
=

∫ 1

0

1
x2
k
(n
k

)
xk−1(1− x)n−kdx = k

(n
k

) ∫ 1

0
x(k−2)−1(1− x)(n−k+1)−1dx

= k
(n
k

)
B(k− 2, n− k+ 1) = k

(n
k

) 0(k− 2)0(n− k+ 1)
0(n− 1)

= k
n!

(n− k)!k!
(k− 3)!(n− k)!

(n− 2)!
=

n(n− 1)
(k− 1)(k− 2)

.

Hence, as n/m hashed values fall in each bucket, we get

E[M2
1] = m ·

n
m (

n
m − 1)

(k− 1)(k− 2)
+ 2

(m
2

)
·

1
(k− 1)2

( n
m

)2
.

Recall that ξ = (k− 1)M1. So

E[ξ 21 ] =
1
m
·
k− 1
k− 2

(n2 −mn)+
m(m− 1)
m2

· n2.

As V[ξ1] := E[ξ 21 ] − E[ξ1]2, we have

V[ξ1] =
1
m
·
k− 1
k− 2

(n2 −mn)+
m− 1
m
· n2 − n2.

For n large,

V[ξ1] ∼
n→∞

(k− 1)+ (m− 1)(k− 2)−m(k− 2)
m(k− 2)

· n2 ∼
n→∞

1
m(k− 2)

· n2.

Hence

SE[ξ1] ∼
n→∞

1
√
k− 2

·
1
√
m
.

Note that the standard error would be infinite for k = 2.

4.3.2. Second step of the proof
We remove now the equidistribution hypothesis. The numbers Ni, i ∈ 1, . . . ,m, of hashed values falling into the buckets

are no longer identical but they are distributed according to a multinomial law. That is P(N1,...,Nm)=(n1,...,nm) =
1
mn

(
n

n1,...,nm

)
.

Without the equidistribution hypothesis, the expectation E[ξ1] is the sum over all possible allocations (N1, . . . ,Nm) =
(n1, . . . , nm) of the hashed values in the buckets.

E[ξ1] =
∑
n̄

PN̄=n̄ · E
N̄=n̄

[
(k− 1)

(
1

M(k)
1

+ · · · +
1

M(k)
m

)]

= (k− 1)
∑
n̄

PN̄=n̄ ·
m∑
i=1

E
N̄i=n̄i

[
1

M(k)
1

]
.

The number of hashed values falling into the buckets are distributed according to a multinomial law. So

E[ξ1] = (k− 1)
∑

n1+···+nm=n

1
mn

(
n

n1, . . . , nm

) m∑
i=1

E
N̄i=n̄i

[
1

M(k)
1

]
.

We have previously seen that E[ 1
M(k)i
] =

1
k−1 · ni. Its growth is in O(ni). It has slow variation in the sense of Definition 1. The

variant of the determinization lemma, Lemma 3, applies. Hence

E[ξ ] = (k− 1)
m∑
i=1

E
N̄i=n̄i

[
1

M(k)
1

]
(1+ O(ε(n))),

with ε(n) →
n→∞

0.When n goes to infinity, this formula gives the same equivalent as if exactly n/m valueswere falling in each
bucket, that is the equidistribution hypothesis. Hence the estimate ξ3 is asymptotically unbiased in the general case also. The
same method applies for the computation of the standard error, finishing the proof of Theorem 1 for the Inverse Family.
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4.4. Analysis of the Logarithm Family

The proof of Theorem 1 is given here for the Logarithm Family. It follows themethod of analysis presented in Section 4.2.
The computations strongly rely on special functions; classical definitions and results are recalled in Section 4.1.

4.4.1. First step of the proof
Unbiased estimate of n. We want to show here that ξ3, defined as

ξ := m ·

(
0(k− 1

m )

0(k)

)−m
· e
−
1
m

m∑
i=1
lnM(k)i

,

is an asymptotically unbiased estimate of n. We noteM3 :=
1
m

∑m
i=1 ln

1
M(k)i
. Under the equidistribution hypothesis, we have

E[eM3 ] = E

[
exp

(
1
m

(
ln
1

M(k)
1

+ · · · + ln
1

M(k)
m

))]
= E[(M(k))−

1
m ]
m.

The density of the kth minimum is

P(M(k)
∈ [x, x+ dx]) = k

(n
k

)
xk−1(1− x)n−kdx.

Under the equidistribution hypothesis, n/m hashed values fall in each bucket. Hence, we have

E[eM3 ] =
[
k
(
n/m
k

)∫ 1

0
x−

1
m xk−1(1− x)

n
m−kdx

]m
.

Using the summary on special functions of Section 4.1, we obtain

E[eM3 ] =
[
k
(
n/m
k

)
B

(
k−

1
m
,
n
m
− k+ 1

)]m
=

[
( nm )!

(k− 1)!( nm − k)!
0(k− 1

m )0(
n
m − k+ 1)

0( nm + 1−
1
m )

]m

=

[
0(k− 1

m )

0(k)
·

0( nm + 1)

0( nm + 1−
1
m )

]m
.

For n large, we have 0( nm+1)

0( nm+1−
1
m )
∼
n→∞

( nm )
1/m. Hence

E[eM] ∼
n→∞

(
0(k− 1

m )

0(k)

)m
·
n
m
.

The expression 1m

(
0(k− 1m )
0(k)

)m
appears as bias. As ξ3 is defined as,

ξ3 := m ·

(
0(k− 1

m )

0(k)

)−m
· eM3 ,

we have

E[ξ3] ∼
n→∞

n,

that is, ξ3 is an asymptotically unbiased estimate of n.
Standard error. What is the standard error of this estimate? Similar computations give us

E[e2M3 ] ∼
n→∞

(
0(k− 2

m )

0(k)

)m
·

( n
m

)2
.

As the variance of ξ3 is defined by V[ξ3] := E[ξ 23 ] − E[ξ3]2, we have

V[ξ3] ∼
n→∞

m2 ·

(
0(k− 1

m )

0(k)

)−2m
·

(
0(k− 2

m )

0(k)

)m
·

( n
m

)2
− n2.
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This gives

SE[ξ3] ∼
n→∞

√√√√(0(k− 1
m )

0(k)

)−2m
·

(
0(k− 2

m )

0(k)

)m
− 1,

finishing the first part of the proof.

4.4.2. Second step of the proof
We remove now the equidistribution hypothesis. The numbers Ni (i ∈ 1, . . . ,m) of hashed values falling into the buckets

are no longer identical but they are distributed according to a multinomial law. That is, P(N1,...,Nm)=(n1,...,nm) =
1
mn

(
n

n1,...,nm

)
.

The main factor of the expectation of the estimate E[ξ3] is E[eM3 ]. Without the equidistribution hypothesis, this
expectation is the sum over all possible allocations (N1, . . . ,Nm) = (n1, . . . , nm) of the hashed values in the buckets.

E[eM3 ] = E

[
exp

(
1
m

(
ln
1

M(k)
1

+ · · · + ln
1

M(k)
m

))]
=

∑
n̄

PN̄=n̄ × E
N̄=n̄
[(M(k)

1 )
−1/m
· · · (M(k)

m )
−1/m
].

The numbers of hashed values falling into the buckets are distributed according to a multinomial law. So

E[eM3 ] =
∑

n1+···+nm=n

1
mn

(
n

n1, . . . , nm

)
E

N1=n1
[(M(k)

1 )
−1/m
] · · · E

Nm=nm
[(M(k)

m )
−1/m
].

We have previously shown that E
Ni=ni
[(M(k)

i )
−1/m
] ∼
ni→∞

0(k− 1m )
0(k) · (

ni
m )
1/m. Its growth is in O(n1/mi ). It has slow variation in the

sense of Definition 1. The determinization lemma, Lemma 2, applies. Hence

E[eM3 ] =
(

E
Ni=n/m

[(M(k)
i )
−1/m
]

)m
(1+ O(ε(n))),

with ε(n) →
n→∞

0. When n goes to infinity, this formula gives the same equivalent as if exactly n/m values were falling in
each bucket (the equidistribution hypothesis). Hence the estimate ξ3 is asymptotically unbiased in the general case also. The
same method applies for the computation of the standard error, finishing the proof of Theorem 1 for the Logarithm Family.

4.5. Analysis of the Square Root Family

The proof of Theorem1 is given here for the Square Root Family. It follows themethod of analysis presented in Section 4.2
and it can be extended to any integer power.

4.5.1. Preliminary
First, as a small preliminary, we compute E[ 1

(M(k))α
]. The density of the kth minimum of n random values chosen in [0, 1]

according to a uniform distribution is

P(M(k)
∈ [x, x+ dx]) = k

(n
k

)
xk−1(1− x)n−kdx.

Hence we have:

E
[

1
(M(k))α

]
= k

(n
k

) ∫ 1

0

1
xα
xk−1(1− x)n−kdx = k

(n
k

)
B(k− α, n− k+ 1)

= k
(n
k

) 0(k− α)0(n− k+ 1)
0(n+ 1− α)

=
0(k− α)
(k− 1)!

0(n+ 1)
0(n+ 1− α)

∼
n→∞

0(k− α)
(k− 1)!

nα.

Note that it gives

E
[
1
√
M(k)

]
∼
n→∞

0(k− 1
2 )

(k− 1)!

√
n.
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4.5.2. First step of the proof (equidistribution hypothesis)
Unbiased estimate of n. The goal is to show here that the estimate of the Square Root Family, ξ2, defined as

ξ2 :=
1(

1
k−1 +

m−1
(k−1)!2

0(k− 1
2 )
2
)
 m∑
i=1

1√
M(k)
i

2 ,
is an asymptotically unbiased estimate of n. We noteM2 :=

∑m
i=1

1√
M(k)i
.

E[M2
2] = E

 1√
M(k)
1

+ · · · +
1√
M(k)
m

2

= E

 m∑
i=1

1

M(k)
i

+

∑
1≤i<j≤m

2√
(M(k)
i )

√
(M(k)
j )

 .
By linearity of the expectation and as theM(k)

i are i.i.d., we have

E[M2
2] = m · E

[
1
M(k)

]
+ 2

(m
2

)
E
[
1
√
M(k)

]2
.

Under the equidistribution hypothesis, n/m hashed values fall in each bucket. The preliminary gives us

E[M2
2] ∼n→∞

m ·
0(k− 1)
(k− 1)!

·
n
m
+m(m− 1)

(
0(k− 1

2 )

(k− 1)!

√
n
m

)2

∼
n→∞

(
1
k− 1

+
m− 1

(k− 1)!2
0

(
k−

1
2

)2)
· n.

The expression ( 1k−1 +
m−1
(k−1)!2

0(k− 1
2 )
2) appears as bias. By definition of ξ2, we have

E[ξ2] ∼
n→∞

n,

that is, ξ2 is an unbiased estimate of n.

Standard error. We now want the standard error of ξ . We first have to compute E[M4
2].

M4
2 =

 1√
M(k)
1

+ · · · +
1√
M(k)
m

4 = m∑
i=1

1

(M(k)
i )

2
+

∑
1≤i<j≤m

4√
(M(k)
i )

3
√
(M(k)
j )

+

∑
1≤i<j≤m

4√
M(k)
i

√
(M(k)
j )

3
+

∑
1≤i<j≤m

6

M(k)
i M

(k)
j

+

∑
1≤i<j<l≤m

12

M(k)
i

√
M(k)
j

√
M(k)
l

+

∑
1≤i<j<l≤m

12√
M(k)
i M

(k)
j

√
M(k)
l

+

∑
1≤i<j<l≤m

12√
M(k)
i

√
M(k)
j M

(k)
l

+

∑
1≤i<j<l<o≤m

24√
M(k)
i

√
M(k)
j

√
M(k)
l

√
M(k)
o

.

As theM(k)
i are i.i.d., we have by linearity of the expectation

E[M4
] = mE

[
1

(M(k))2

]
+ 8

(m
2

)
E

[
1√

(M(k))
3

]
E

[
1√
(M(k))

]
+ 6

(m
2

)
E
[
1
M(k)

]2

+ 36
(m
3

)
E
[
1
M(k)

]
E

[
1√
(M(k))

]2
+ 24

(m
4

)
E

[
1√
(M(k))

]4
.
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We compute in the preliminary that E[ 1
(M(k))α

] ∼
n→∞

0(k−α)
(k−1)! n

α . As n/m hashed values fall in each bucket, we get

E[M4
2] ∼n→∞

( n
m

)2 (
m
0(k− 2)
(k− 1)!

+ 8
(m
2

) 0(k− 3
2 )0(k−

1
2 )

(k− 1)!2
+ 6

(m
2

) 0(k− 1)2
(k− 1)!2

+ 36
(m
3

) 0(k− 1)0(k− 1
2 )
2

(k− 1)!3
+ 24

(m
4

) 0(k− 1
2 )
4

(k− 1)!4

)
.

The standard error of ξ2 is defined by SE[ξ2] = 1
n

√
E[ξ 22 ] − E[ξ2]2. As ξ 22 := (

1
k−1 +

m−1
(k−1)!2

0(k− 1
2 )
2)−2M4

2 , we obtain

SE[ξ2] ∼
n→∞

 1
m2

(
1
k− 1

+
(m− 1)0(k− 1

2 )
2

(k− 1)!2

)−2 (
m

(k− 1)(k− 2)
+
8
(m
2

)
0(k− 3

2 )0(k−
1
2 )

(k− 1)!2

+
6
(m
2

)
(k− 1)2

+
36
(m
3

)
0(k− 1

2 )
2

(k− 1)(k− 1)!2
+
24
(m
4

)
0(k− 1

2 )
4

(k− 1)!4

)
− 1

1/2 .
4.5.3. Second step of the proof (without the equidistribution hypothesis)
As we have seen, the main factor of the estimate ξ is E[M2

]. Without the equidistribution hypothesis this expectation is
the sum over all possible allocations N1, . . . ,Nm = (n1, . . . , nm) of the hashed values in the buckets.

E[M2
] = E

 1√
M(k)
1

+ · · · +
1√
M(k)
m

2

=

m∑
i=1

E

[
1

M(k)
i

]
+ 2

∑
1≤i<j≤m

E

 1√
(M(k)
i )

√
(M(k)
j )


with

E

 1√
(M(k)
i )

√
(M(k)
j )

 =∑
n̄

PN̄=n̄ × E
N̄=n̄

 1√
(M(k)
i )

√
(M(k)
j )

 .
For a given allocation, theM(k)

i are independent and

E

 1√
(M(k)
i )

√
(M(k)
j )

 = ∑
n1+···+nm=n

1
mn

(
n

n1, . . . , nm

)
E
Ni=ni

 1√
(M(k)
i )

 E
Nj=nj

 1√
(M(k)
j )

 .
We have seen above that

E
Ni=ni

 1√
M(k)
i

 ∼
ni→∞

0(k− 1
2 )

(k− 1)!

√
ni.

Its growth is inO(
√
n). It has slow variation in the sense of Definition 1. The variant of the determinization lemma (Lemma 3)

applies. Hence we have:

E

 1√
(M(k)
i )

√
(M(k)
j )

 = 1
(k− 1)!

2

0

(
k−

1
2

)2
(1+ O(ε(n)))

E[M2
] = n

(
m

1
(k− 1)!

0(k− 1)+ 2
(m
2

) 1
(k− 1)!

2

0

(
k−

1
2

)2)
(1+ O(ε(n))).

This formula gives the same asymptotic equivalent as the one with the equidistribution hypothesis. The same method
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applies for the computation of the standard error. Other variants of the determinization lemma are used, typically to obtain
equivalent of expressions as

E

 1

M(k)
i

√
(M(k)
j )

√
(M(k)
l )


=

∑
n1+···+nm=n

 1
mn

(
n

n1, . . . , nm

)
E
Ni=ni

[
1

(M(k)
i )

]
E
Nj=nj

 1√
(M(k)
j )

 E
Nl=nl

 1√
(M(k)
l )


= E

[
1

(M(k)
i )

]
E

 1√
(M(k)
j )

2 (1+ O(ε(n))).
Hence, in the general case, the same estimate may be used and it has asymptotically the same standard error. This ends the
proof of Theorem 1. �

4.6. Study of the standard error for large m

This section gives the proof of Lemma 1. It is a study for large m of the equivalents of the standard errors of the three
families given in Theorem 1.
Inverse Family. We directly have

C1(m, k) ∼
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·
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√
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,

from the definition of C1(m, k).
Square Root Family. We want to show here that the equivalent of the estimate of the Square Root Family, C2(m, k), defined
as
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where 0 is the Euler Gamma function defined in Section 4.1. Let us note
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in order to have C2(m, k) =
√
B−11 · B2 − 1. Whenm is large, B1 can be expressed in the following way
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Whenm is large, B2 can be expressed in the following way
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As C2(m, k) =
√
B−11 · B2 − 1, we obtain
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Logarithm Family. We want to show here that the equivalent of the estimate of the Logarithm Family, C3(m, k), defined as
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Similar computations give(
0(k− 1

m )

0(k)

)−2m
= exp

(
2ψ(k)−

1
m
ψ ′(k)+ o

(
1
m

))
.

Hence

C3(m, k) =

√
exp

(
−2ψ(k)+

2
m
ψ ′(k)+ o

(
1
m

))
· exp

(
2ψ(k)−

1
m
ψ ′(k)+ o

(
1
m

))
− 1

=

√
exp

(
ψ ′(k)
m
+ o

(
1
m

))
− 1,

and

C3(m, k) ∼
m→∞

√
ψ ′(k) ·

1
√
m
,

finishing the proof.

4.7. Precision and comparison of the algorithms

This section presents the proof of Theorem 2. It is an analysis of the precision of the estimates of the three families,
P1(M, k), P2(M, k) and P3(M, k). (1) is direct. We prove here (2), that is, when k is large, we have for i = 1, 2, 3,
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Inverse Family. Direct by the definition of the precision of the estimate of the Inverse Family, P1(M, k):
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Square Root Family. The precision of the estimate of the Square Root Family, P2(M, k), is defined as
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When k is large, we have the following Taylor expansions
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With these expansions, we get
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Hence
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Logarithm Family. The precision of the estimate of the Logarithm Family, P3(M, k) is defined as

P3(M, k) :=
√
k · ψ ′(k) ·

1
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M
.

When k is large, the Euler Trigamma function ψ ′(k) is equivalent to 1k , giving

P3(M, k) ∼
k→∞

1
√
M
.

This finishes the proof of Theorem 2.

5. Validations and experimentation results

To study the behaviors of the three families of estimates, we use files of different kinds and sizes, presented in Section 5.1.
In Section 5.2, the relative error of the estimates is shown to be close towhat is expected from theory (see Fig. 4). They have a
very good trade-off between their precision and the size of thememory: for instance, a memory of only 12 kB is sufficient to
build an estimatewith an accuracy of 2 percent for amultisetwith severalmillion elements. In Section 5.3 the execution time
of the algorithms is studied using an optimized implementation of the best practical estimate, Mincount1. The algorithm
only takes a few seconds to process files withmillions of elements and is only 3 to 4 times slower than the very simple unix
command cat -T, that just replaces the tab characters of a file with ˆI (see Fig. 6). Finally, we show in Section 5.4 how
Mincount can be used to detect attacks on a network, e.g. the spreading of the Code Red worm.

5.1. File suite

To validate the three families of algorithms we ran simulations using files of different kinds and sizes. Examples of
these files are given in Fig. 3. The size range is from few tens of thousands to tens of millions. Files are very diverse;
English plays, e.g. Hamlet; router logs (traces available on the website of the NLANR Measurement and Network Analysis
Group http://moat.nlanr.net); access logs collected at the gateway of the INRIA Rocquencourt campus; proteinic sequences
(available from the website of the database group of the University of Washington2); random number files and consecutive
number files. Random is a set of 500 files containing 10000 integers chosen uniformly at random. In the following section,
the results for these files are an average over the set. 100 millions is a list of 100 million consecutive integers. This very
structured set is used to verify the good aleatory properties of the algorithm.

1 See project page, http://algo.inria.fr/giroire/mincount.html.
2 http://www.cs.washington.edu/research/xmldatasets/.

http://moat.nlanr.net
http://algo.inria.fr/giroire/mincount.html
http://www.cs.washington.edu/research/xmldatasets/
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Fig. 3. Simulation data suite.

5.2. Validation of the algorithms

We estimate here the number of distinct elements of the data suite files of Section 5.1 using estimators of the three
families of estimates. Fig. 4 shows a summary of typical results for the estimators built with the third minimum. Each of the
three horizontal blocks corresponds to results for the estimator of one family. Different columns correspond to simulations
with different values of m leading to different expected precisions (recall that m is the number of simulated experiences
during the stochastic averaging process). A number in the table is the experimental relative error, i.e. the difference in percent
between the estimate given by the algorithm and the exact value. For example, the number of different connections in the
trace file Ind-230t is estimated with a precision of respectively 1.4%, 4.7% and 4.0% by the estimates of the Inverse, Square
Root and Logarithm Families. The third set of results, Random, corresponding to mean results over simulations on 500 files,
validates the precision given in Theorem 1. We point out that the numbers are close to what is predicted by the theory. For
example for m = 32, we obtain precisions of 17.9, 13.1 and 11.8 for the three families to compare them with the expected
precisions 17.7, 12.8 and 11.2, indicated in the lines %th in Fig. 4. This validates the algorithms: the asymptotic regime is
quickly reached and the values are well distributed by the hashing function.
The algorithms have a very good trade-off between the precision and the size of thememory. For instance, form = 1024,

the algorithm of the Logarithm Family built on the third minimum (the best practical estimate) stores the three first
minimums for m buckets. Using 32-bit floating numbers, this corresponds to a memory of only 12 kB. This is sufficient
to build an estimate with accuracy of order 2 percent for a multiset with several million elements.

5.3. Execution time

The algorithms aremotivated by the processing of very largemultisets of data, in particular in the field of in-line analysis
of internet traffic. Most backbone networks operated today are Synchronous Optical NETworks (SONET). In these networks,
the links are optical fibers classified according to their capacity from OC-1 (51.84 Mbps) to widely used OC-192 (10 Gbps)
and evenOC-768 (40Gbps). It is crucial for carriers to know characteristics of the traffic for networkmonitoring and network
design, see [11,18]. In particular, Estan, Varghese and Fisk inventory four major uses of the number of distinct connection
statistics in [7]: general monitoring, detection of port scan attacks, detection of denial of service attacks (DoS attacks), and
study of the spreading of a worm. At 40 Gbps speed a new packet arrives every 60 nanoseconds, assuming an average packet
size of 300 bytes, see [11]. This allows only 150 operations per packet on a 2.5 GHz processor ignoring the significant time
taken by the data to enter the processor. Thus execution times of algorithms are crucial in this context. The algorithms of
the three families are mainly composed of a very simple internal loop that finds the kth minimum of a multiset. This loop is
given for k = 2 in Fig. 5. Typically, only one comparison is performed in each loop iteration. Hence the algorithms are quite
efficient.

Mincount, an optimized implementation of the best practical estimate, is used here. Fig. 6 showsMincount execution
times in seconds while processing the files of the data suite. The algorithm takes only few seconds to give an estimate of
the cardinality of files with millions of elements. For example, 4.8 seconds are enough to process the trace Auck-9M with
13 million elements, including 9 million distinct ones. This corresponds to a rate of 53 MegaBytes per second or 3 million
elements per second. The following Unix commands are used as references for the execution time: cat -T that reads the
file and displays tab characters as ˆI; wc -l that displays the number of lines of the file; wc -w that displays the number
of words of the file; sort -u | wc that gives the number of distinct lines of the file. Fig. 6 shows the ratios between the
execution time of Mincount and the one of the Unix commands. The algorithm is only between 3 to 4 times slower than
the cat -T command that only replaces the tab characters in its input by ˆI.
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Fig. 4. Relative error (in percent) of the estimates of the three families.

Fig. 5. Internal loop for k = 2.

Fig. 6. Mincount (Mc) execution times on the files of the data suite, corresponding throughput (in millions of bytes per second (MB/s) and millions of
elements per second (Me/s)) and timing ratios betweenMincount and common Unix commands.

5.4. Code red attacks

We also simulate an analysis of internet traffic to show a typical use of the algorithms, using Mincount. The NLANR
Measurement and Network Analysis Group is doing daily network monitoring. We analyze their traces of July 19th 2001
when a Code RedWorm variant started spreading. The Code RedWormwas designed to spread very fast. More than 359000
computers were infected in less than 14 hours and at the peak of the infection, more than 2000 new hosts were infected
each minute. We considered three sets of traces: One monitored in the Indiana University MegaPOP (Ind), one in the FIX



426 F. Giroire / Discrete Applied Mathematics 157 (2009) 406–427

Fig. 7. Connections Peak during the Spreading of the Code Red Worm.

West facility at NASA Ames (FXW) and the last one in Tel Aviv University (TAU). The traces correspond to a window of 1
minute 30 every three hours.We use the algorithm to estimatewithin 4% (m = 256) the number of active connections using
this link during each of these periods of times. Results are shown in Fig. 7. It is of course a very rough analysis and more
data for other links, other days for example would be needed to give precise conclusions about the spread of the worm. But
we are able to detect a change of the activity of the network caused by the infected hosts in the network. We see a very net
increase of the number of active connections starting from 3 pm. For the Ind link, the usual load seems to be around 35000
connections, 33 842 at 6 am. At its peak at midnight we estimate a number of 246558 connections, around 7 times more.
The observation is the same for TAU and FXW: respectively 7629 and 9793 connections at 3 pm and 32670 and 55877 at
midnight. So, by monitoring a link using our algorithm, we are able to see, using constant memory, unusual increase of the
traffic, to detect an attack and to give rough indications about its propagation and extent in some parts of the network.
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