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Why may Routing be difficult?

Jean-Claude wants to reach his destination

If the network is small, known, static, etc. Easy !!
Apply your favorite shortest path algorithm (e.g., Dijkstra)
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Why may Routing be difficult?

What for David?

Rungis

If the network is Huge, only partially known, dynamic, etc.
What to do ??
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How Internet works? Border Gateway Protocol

BGP: routing protocol of the Autonomous Systems’ (AS) network

Routing Tables (RT) attached to each AS

1 entry/destination: whole path stored (to avoid loops)

to deal with dynamicity: ASs send to each other paths they know

ASs may lie (Policy), paths may be too long
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Challenges

BGP Ideally
Routing Tables size O(n log n) bits O(log n) bits

Paths Length depend on ASs policies Shortest paths
Update Time Long (≈ 5 min.) Fast (using only local information)

(n is the number of ASs)

Large-scale Networks have specific structural properties
small diameter, high clustering coefficient, power-law degree-distribution

hyperbolicity, chordality, etc.

Objectives
Understand (find new) Properties

Use it for algorithmic purposes (not only routing)

Model such networks

Simulate (static/dynamic behavior)
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Compact Routing

Goal To deliver a message in a distributed way

Routing Scheme protocol that directs the traffic in a network

Routing Problem: definitions of:

Routing Tables RT

Information required in the message headers hd

Routing function f: compute next hop / may modify the header

Models

labelled/name independent node Identifiers are part of the design or not

design port model local labeling (port number) are part of the design or not
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Performances Measures

Stretch

How far the route actually followed is from a shortest path

Multiplicative stretch: maxx,y∈V (G) ≤
|route(x,y)|
dist(x,y)

.

Additive stretch: maxx,y∈V (G) ≤ |route(x , y)| − dist(x , y).

Memory space

Space necessary to store local routing table (per node)

Size of the node Identifiers / message header (generally O(log n))

Time complexity

Distributed/Centralized protocol

Time to setup data structures

Time to update data structures
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Related Works

Names and Headers (if any) are of polylogarithmic size

network mult. routing table
stretch labelled name-independent

arbitrary shortest path O(n log n) [folk] Θ(n log n) [Gavoille,Pérennes]

(k ≥ 2) O(k) O(n1/k ) [Thorup,Zwick] Θ(n1/k ) [TZ/Abraham et al.]

trees shortest path O(log n) [TZ/Fraigniaud,Gavoille] Ω(
√
n) [Laing,Rajaraman]

2k − 1 Θ(n1/k ) [Laing/Abraham et al.]

doubling-α O(1) + ε O(log ∆) [Talwar/Slivkins] O(ε−α log n) [Abraham et al.]

dimension O(log n) [Chan et al./Abraham et al.]

planar 1 + ε O(log n) [Thorup]

H-minor free 1 + ε O(|H|! · 2|H| log n) [Abraham,Gavoille]

In general graphs, Θ(n log n) is optimal.
Can we do better than BGP?

Yes !! (we hope), using structural properties
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Chordality

Large-scale Networks ⇒ high clustering coefficient
≈ 2 neighbors of a same node are neighbors with high probability

≈ friends of my friend are my friend

⇒ few large induced cycles

Chordality

Induce cycle = cycle without chord

chordality of a graph G = length of largest induced cycle in G

k-chordal graph: chordality ≤ k
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Simple Routing scheme in k-chordal graphs

Universal, Labelled scheme, no header

G a network and T a rooted spanning tree of G prefix order labeling
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .
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Simple Routing scheme in k-chordal graphs

Universal, Labelled scheme, no header

G a network and T a rooted spanning tree of G prefix order labeling
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

Once T has been chosen

Space: labeling of nodes: any rooted subtree ⇔ interval
routing table: each node knows the interval of its neighbors
O(∆ log n) bits per node

Time: easy to compute in time O(D) in synchronous distributed way

Stretch: if T is a BFS-tree in a k-chordal graph: additive stretch ≤ k − 1
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In k-chordal Graphs

Names and Headers (if any) are of polylogarithmic size

network stretch table computation time

+2 O( log3 n
log log n

) O(m + n log2 n) [Dourisboure,Gavoille’02]

3-chordal +1 O(∆ log n) O(n) [NRS’09]

distributed protocol / no header

k + 1 O(k log2 n) poly(n) [Dourisboure’05]

header never changes
k-chordal k − 1 O(∆ log n) O(D) [NRS’09]

distributed protocol / no header
O(k log ∆) O(k log n) O(m2) [KLNS’12]

MASCOTTE Algorithmic in Large-scale Networks



The technical slide

Theorem: Compact Routing scheme for [KLNS’12]

n-node m-edge graph with max degree ∆ and using k-good decomposition

routing tables of size O(max{k log ∆, log n}) bits computable in time O(m2).

additive stretch is O(k log ∆).

“History” and techniques

Cops and Robber
k − 1 cops can capture a robber in k-chordal graphs

⇒ nice structural results based on separators

k- good decomposition
tree-decomposition with all bags are k-caterpillars

O(m2) algorithm that

1 either computes a k-good decomposition,

2 or finds an induced cycle of length > k

In Case 1 ⇒ treewidth ≤ k∆; treelength ≤ k − 1; hyperbolicity ≤ 3
2
k.

Compact Routing
Combining a BFS-tree and a k-good decomposition
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Further Works

short term goals:

Implement the decomposition-algorithm and simulate on large scale models

What if other properties are included?

and then?

Structural Properties of Large-scale Networks

Efficient algorithms for ≥ 105-node graphs
(e.g., for hyperbolicity O(n4)-algorithms cannot work)

what about NP-hard problems? (e.g., chordality)
other “hidden” properties?

Distributed algorithms

How facing dynamicity?

models of dynamicity

localized algorithms
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