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Overall objective

Efficiently solve combinatorial problems, mainly in graph theory.

Design as efficient as possible algorithms, from a theoretical
point of view.

Get a better understanding of the hardness of problems.

Compare our algorithms to practice: implementation and
experimentation.
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The obstacle

Conjecture: P 6= NP.

Lots of problems (NP-hard) cannot be solved in a theoretically fast
time, i.e. in polynomial time.

How to solve them? Several methods:

approximation algorithms;

randomized algorithms;

heuristics;

exact algorithms.
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Exact algorithms

Exact exponential algorithms: running time in cn with c as small
as possible. ⇒ if c is small, one can solve instances of important
size.
Sometimes subexponential algorithms .

Fixed parameter algorithms : running time in f (k)P(n), where

k parameter (well chosen),

f arbitrary function,

P polynomial.

⇒ if k is small, one can solve.
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Optimization problems and parameterization

NP minimization problem
Instance: x ∈ Σ∗ where Σ finite alphabet.
Goal: Find min{cost(x , y) | y ∈ sol(x)} with

sol(x) set of solutions of x ;

cost : {(x , y) | y ∈ sol(x)} → N.

Associated decision problem
Instance: x ∈ Σ∗ and integer k.
Question: min{cost(x , y) | y ∈ sol(x)} ≤ k?

Associated parameterized problem
Instance: x ∈ Σ∗ and integer k.
Parameter: k.
Question: min{cost(x , y) | y ∈ sol(x)} ≤ k?
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Example 1: Vertex cover

Vertex cover = set of vertices C s. t. every edge has an end in C .

Minimum Vertex Cover:
Instance: Graph G .
Goal: Find a minimum-size vertex cover G .

Parameterized Minimum Vertex Cover:
Instance: Graph G and integer k .
Parameter: k.
Question: does G have a vertex cover of size (at most) k ?
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Example 2: Chromatic Number

colouring = c : V (G )→ S s. t. c(u) 6= c(v), ∀uv ∈ E (G ).

Chromatic Number:
Instance: Graph G .
Goal: Find a colouring of G with minimum number of colours.

Parameterized Colourability:
Instance: Graph G and integer k .
Parameter: k.
Question: is G k-colourable? (χ(G ) ≤ k?)
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FPT Problems

A parameterized problem is FPT (Fixed Parameter Tractable) if it
can be solved in f (k)nc time.

FPT implies polynomial-time solvable for each fixed k = XP.

Min. Vertex Cover, Max. Stable Set, and Min.
Dominating Set are XP.
Exhaustive algorithm testing all O(nk) k-subsets.

Colourability is not XP because 3-Colourability is
NP-complete, so it is not FPT.

Eggemann, Havet et Noble. k-L(2,1)-Labelling for Planar Graphs is

NP-Complete for k ≥ 4. Discrete Applied Math. 158(16): 1777-1788, 2010
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Parameterized Complexity

P ⊆ FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆W[P] ⊆ XP︸ ︷︷ ︸
likely non FPT

Conjecture FPT 6= W[1], and more generally W[i] 6= W [i + 1]

P = NP ⇒ FPT = W[1]

but the converse does not seem to be true.

Examples: Min. Vertex Cover is FPT, Max. Stable Set is
W[1], Min. Dominating Set is W[2]

Amini, Sau, and Saurabh. Parameterized Complexity of the Smallest

Degree-Constrained Subgraph Problem. IWPEC 2008.
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Techniques for FPT algorithms

Reduction rules and kernels.
Gonçalves, Havet, Pinlou and Thomassé. The spanning galaxy

problem. Discrete Applied Math., to appear.

Bounded search tree
Havet and Sampaio. On the Grundy number of a graph. IPEC

2010.

Iterative compression

Treewidth, minor theory.

Color Coding

. . .
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Reduction to a kernel: Kernelization

f (k)-kernelization: polynomial-time algorithm
instance (G , k) −→ instance (G ′, k ′) such that:

(G ′, k ′) is equivalent to (G , k);

k ′ ≤ k and |G ′| ≤ f (k).

(G’,k’)

|G’¦=f(k)

poly time
(G,k)

Kernelization + brute force = algorithm in time O(g(k) + nc).

Theorem: A parameterized problem is FPT if and only if it admits
a kernelization.
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Small kernels

We want small kernels, of polynomial size if possible.

Finding small kernels:

Integer Linear Programming,

Crown decomposition,

...

Non-existence of small kernels:

Distillation: if a distillation algorithm exists, then there is no
polynomial-size kernel (unless PH = Σ3

p).
→ parameter preserving transformations in polynomial time.

Guillemot, Havet, Paul and Perez. On the (non-)existence of

polynomial kernels for Pl -free edge modification problems. Algorithmica,

to appear.

Reinforcement with colouring.
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Perspectives

Develop and use existing methods.

Find new methods (probabilistic?, discharging-like?...)

Links between FPT and approximation algorithms. In particular,
relation between kernels and approximations (better upper bounds
/ other lower bounds).

Envisaged problems:

colouring. Grundy number FPT? Polynomial kernels of Dual
Greedy Colouring and Dual b-Colouring?
Meaningful parameter for which Colourability is FPT.

digraphs. Subdivision of digraphs. Is k-linkage in acyclic
digraphs FPT ?
Parameterization with feedback vertex set.
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Parameterized complexity problems on digraphs

Feedback vertex set (fvs), feedback arc set (fas), cycle packing
number (cpn).

cpn ≤ fvs ≤ fas

.
General digraphs Tournaments

cpn ≤ k? W[1]
XP

NP-complete ?
FPT ?

fvs ≤ k ?
FPT

Polynomial kernel ?
O(k3)-kernel

Smaller kernel ?

fas ≤ k?
FPT

Polynomial kernel ?
(2 + ε)k-kernel
Smaller kernel ?

.
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Exponential Algorithms
Classical methods.

Dynamic programming.

Branching algorithms.
Bessy and Havet. Enumerating the edge-colourings and total

colourings of a regular graph. J. Combin. Optimization, to appear.

Sort and Search

Inclusion-Exclusion

New methods.

Running-time analysis of branching algorithms. Measure and
Conquer, Branch and Recharge.

Havet, Klazar, Kratochvil, Kratsch, and Liedloff. Exact algorithms

for L(2,1)-labeling of graphs. Algorithmica 59(2):169–194, 2011.

Tree decomposition.

Iterative compression.
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Perspectives

Develop and use existing methods.

Find new methods (probabilistic?, discharging-like?...)

Envisaged problems:

colouring (and variants),

counting and enumerating solutions

restriction of some problems to graph classes.
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Theoretical efficiency vs et practical efficiency

Courcelle’s Theorem
If the treewidth is bounded (≤ k), then every problem expressable in
msol logic is solvable in f (k).n time.

BUT what about the exact complexity? hidden constant

222
2.
..
..
.2
k

.n

Height of the expression depends on the the number of quantifiers in the
logical expression
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Measuring performances of an algorithm

Classical complexity does not totally reflect the behaviour of an
algorithm.

hidden constants.

worst-case complexity.

Complementary analysis:

Implementation et experimentation.

Average complexity.

=⇒ sampling problem.
Notion of classes of hard instances → kernels.
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