arXiv:1004.5217v1 [cs.IT] 29 Apr 2010

Analysis of Quasi-Cyclic LDPC codes under ML
decoding over the erasure channel

Mathieu Cunchg& Valentin Savif, Vincent Roca
*INRIA Rhone-Alpes, Grenaoble, FranceCEA-LETI MINATEC, Grenable, France

Abstract—In this paper, we show that Quasi-Cyclic LDPC the sequences of source and parity bits. This can be done by
codes can efficiently accommodate the hybrid iterative/ML @-  Gaussian elimination (GE), whose Comple@jtyxpressed as
coding over the binary erasure chgnnel. We demonstrate that the number ofrow Operationg, is expected to scale as
the quasi-cyclic structure of the parity-check matrix can be ad- herek d tes th b f bits. H it h
vantageously used in order to significantly reduce the compkity where eno.es € number of source bits. However, 1t has
of the ML decoding. This is achieved by a simple row/column been shown inl[9] that the GE can take advantage of the
permutation that transforms a QC matrix into a pseudo-band sparseness of the parity check matrix, and it can be effigient
form. Based on this approach, we propose a class of QC-LDPC performed inO((gk)?) row/symbol operations, wherg is
codes with aIr_nost |d¢_aal error correction performance under called thegap of the codeRoughly speaking, the idea behind
the ML decoding, while the required number of row/symbol . that if a fracti f ity bit ved -
operations scales askv'k, where k is the number of source IS _a ' a fractiong of parity bits are .reso V? ' re_malnlng
symbols. parity bits can be recovered by performing an iterative meas
decoding.

Similar considerations apply to the ML decoding over the

o ) ~ BEC, which consists of solving the lineaesidual system
In modern communication systems, data is often transmlttgaline — H,X,, where X, and X, denote the vectors of

as independent packets. These packets can be subjectés 108seived and of erased bits, respectively, &hd H, are the
(erasures) caused by bad channel conditions, intermittemt corresponding submatrices &f. Using a GE algorithm that
nectivity, congested routers, or failures. If solutionsséxd t5eg advantage of the sparseness of this systeni [5], |], th
on the retransmission of lost packets are possib_le (AR@ecoding complexity scale#) average as (ck)? row/s;h/mbol
Automatic Repeat Requests), they are not always suitalile (§perations, where is the average reception overhead neces-
broadcasting), nor possible (no return link, e.g. sa&dm- g5y 1o successfully complete the iterative decoding. Hewe
munications). In such cases Forward Error Correction (FE¢)e decoding complexity is still quadratic in As the code
schemes represent the foremost alternative. These SChepggih tends to infinitys tends to a positive threshold value,
rely on erasure codes operating either at the transporteor i even if this asymptotic threshold is closettoe still can
application layer of the communication system, which ate alye re|atively large for finite codes. Besides, typicalleréhis

to recover lost data thanks to the transmission of redundant,sdeoff between the performance of the IT decoding that
(repair) packets. . . of the ML decoding. Consequently, improvement of the ML

~ In the family of error-correcting codes, a prominent rolgecqding performance comes at the price of some degradation
is played by Low-Density Parity-Check (LDPC) codes. Theys the |T performance, which results in an increased average
feature a linear complexity iterative (IT) decoding, and &8 \erheadt - [7]. For instance, for regular repeat-accumulate
optimized for a broad class of channels, with asymptoycaItRRA) codes, it has been shown inl [6] that increasing the
performance close to the theoretical Shannon limit. Altffou degree of source bit-nodes results in an improvement of

iterative and maximum likelihood (ML) are equivalent for,a \mL performance, but induces a degradation of the IT

cycle-free codes, for a given finite code (with cycles) therformance. Hybrid IT-ML decoding algorithms have also
gap between their performance can be significant. Hence, Mbany considered if [8].

decoding has been recently considered in order to improveQuaSi_CyCIiC (QC) LDPC codes [13] are structured LDPC
the correction capacity of LDPC codes over the binary eraz des defined by a base matfwith entriesh: - € NU{-1}

2 3 -
sure channel (BEC) for short to moderate code-length. Thﬁjbsequently, parity-check matrices with variable lenggh

comes at a cost in the decoding complexity; however, efﬁciege obtained by expanding the base matfixby some factor
ML decoding algorithms with reduced complexity have been

S . . . .
proposed Qver th.e last few year". [1] . 1We consider here the complexity of the GE, and not of the @ngod
Before discussing the complexity of the ML decoding, let Usocess itself. Clearly GE is performed only once, and caddve “offline”,

first consider the complexity of the encoding process. Encadtknce its complexity is irrelevant for the encoding prociesslf, but it is
ing a systematic LDPC code is equivalent to solving a |ine(rﬂlevant in the perspective of the subsequent discussiont &L decoding

. . complexity.
SyStemeP_ = H,S, where H = (HSaHp) is the par.'ty' 2Each row operation requirek bit operations (corresponding to the
check matrix of the code, anfl and P denote respectively entries of the row), and one operation on the right-hand efdére system.
For Application Layer (AL)-FEC, the right-hand side is ndbi but an entire
This work was supported by the French ANR grant No 2006 TCOM Olpacket, also called symbol. Thus, a row operation will be atferred to as

(CAPRI-FEC project). symbol operation
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z > 1. Within the expansion process, each entry of the baBe Gaussian elimination

matrix is replaced by a squarex z matrix: a —1 entry is . . .
. . ) Although many algorithms are known for solving linear

replaced by the all-zero matrix, while a non-negative entr L .

. . . . stems, most of them are based on (efficient implementation
b; ; > 0 is replaced by a circulant permutation matrix corre- . L . ) .

Jo= ) ; . of) the Gaussian Elimination (GE) algorithm. This alganith
sponding to a shift by; ;. It is known that non-zero entries .
. ¥ . - consists of two steps.

of the base-matrix can be chosen such as to avoid unsuitable. Lo

. . : irst, the Forward Elimination (FE) step transforms the
topologies in the expanded matrix (as short cycles), whial m stem into an upper trianaular svstem. which can be done
cause degradation of the iterative decoding performérice [4S Y PP 9 Y '

The goal of this paper is to design LDPC codes thanO”OWS' S_tartmg_ from .O’ C*‘_OOS‘? n colummanqn null
. . ) entry, the pivot, with row-index > . Permute rows and
efficiently accommodate the hybrid IT/ML decoding. Com- _ )

, then add the row to all the rows corresponding to non-

plexity and error correction performance of the ML decodi ro sub-diagonal entries of columnSimultaneously, similar

constitute the primary objectives. IT performance does ng : . X
. : operations are performed on the right-hand side of the syste
impact the error correction performance of the overall sahe

but it allows for increasing throughput in the low-loss sweo, i.e. the right symbol of the-th row is added to right symbols

We do not consider QC-LDPC codes for improving the HOf corresponding rows.

decoding performance, but for decreasing the ML decodirzg-rhe algorith_m comple’Fes with a Backward Substitution
complexity. This is achieved by using a transformation & th S) step, which recursively recovers the last symbol of

residual systemH, X, — H,X, into a linear system with a an upper—triang.ular system: starting frpm the last column,

pseudo-band system matrix. This transformation explbiés tthe corresp_ond|_ng erased _symbol IS given the value of the

quasi-cyclic structure of the parity-check matriik. Conse- porrespondlng T'ght'_h"i‘”‘?' side SymboL and is then substitu

quently, the ML decoding can be efficiently performed, and all the equz_jltl_ons It is involved n- . .

the required number of row/symbol operations scales as-a sup'n the r‘emamlng of the paper, .th|.s al_gotlthm will be r.efq_arre

quadratic power ok, namelykv/k. to as the' StaQndard Gaussian EI|m|nat|on Its complexity is
The paper is organized as follows. In Sectidn Il, we briefI?}'c order O(k~) row/symbol operations.

review the GE and ML decoding algorithms. Band transforma-

tion and a complexity analysis of ML decoding are presenteqj|. Pseupo-BAND MATRIX TRANSFORMATION AND ML

in Section[dIl. Sectior 1V describes the proposed design of DECODING COMPLEXITY

regular repeat-accumulate QC-LDPC codes. Finally, Sectio

Vlpresents the experimental results, and Se¢fidn VI corslud Itis well known that the complexity of the GE algorithm can
the paper. be reduced if the system matrix is structured in some specific

way. For instance, the use oband structurdo reduce the ML

decoding complexity has been studiedlin/[11] &nd [10]. Is thi

section, we show that the parity check matrix of QC-LDPC
The hybrid IT/ML decoder[[6], [[8] is an advantageousodes features such a “hidden” band structure, that allows f

combination of the IT and ML decoders, which has the abilitgonsiderably reducing the complexity of ML decoding with

to cope with fluctuating channel conditions, and allows t®tandard GE.

tradeoff between complexity and performance.

II. HYBRID IT/ML DECODING

A. Transformation into a pseudo-band matrix

A. Principles Consider a base matri®, of sizea x b, with entries from

Consider an LDPC code defined by a parity check matrix-1,0,..., M}. Let H be am x n binary matrix, obtained
H, and letX be a codeword transmitted over the BEC. Thpy expandingB by some factorz > M; hence,m = za
sut_)set of received symbBlés submitted to the IT decoder,andn = zb. With an appropriate row/column permutation, the
which may recover all or only a part of the erased symbols. duasi-cyclic matrixZ can be transformed into a matrié’
the IT decoding fails, the ML decoder is activated, and trigat exhibits a band structure.
to complete decoding by solving the residual systépX. =  The following algorithm performs the appropriate permuta-
H,X,, as explained in Sectidn |. The system matHx has tjon:
a number of rows equal tev’ < m — k and a number of

columnH equal ton’ < n — k. The above inequalities are for all (i,j) in [0, ..., m =1] x [0,...,n — 1]

generally tight, except when the IT decoding fails in theoerr a) decomposei = z;z +y; andj = z;z +y;

floor region (small stopping sets). This linear system can be b) define:i’ = z; + y;a and;j’ = z; + y;b

solved by using the Gaussian elimination method, or anyrothe c) set H'[i'][j'] = H[i][j]

algorithm available in the literature. The resulting matrixH’ exhibits a pseudo-band structure,

as illustrated at Figurel 1. Note that, by convention, (he))
SEntries X of are referred to as symbols, instead of bits. Albtpin AL- position of the matrix is the bottom-right position, and the
FEC applications, each symbols represents an entire paskéth is either <5 me convention will be used for the subsequent figures. Two
erased or correctly received . . - .
4Each symbol received or recovered by the IT decoding, remtveolumn integers p and ¢ are associated withfl’, which represent
and at least 1 row from the system matrix respectively thesubdiagonaheight and the width of the band.
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Fig. 1. H’, the parity check matrix after row/column permutation

They depend on\/, the maximum value of the non- nega‘uvé:'g 2. H,, the decoding matrix  Fig. 3. The decoding matrix after
Obtained fromH the Forward Elimination (FE) step.
entries of B, and ona andb, the dimensions of3. We have

p = aM+1) . . .
subdiagonal height and width of the bandréf are less than or
q = bM+1) L
equal to the abovg andq parameters, for simplicity reasons,
Proof: Consider the set of: x z circulant matrices we consider that they are both equalt(nhote thaty > p). The
corresponding to a right-shifted identity dypositions, with Same convention holds for the supradiagonal height anchwidt
k €{0,...,M}, and letc, 5 be the element of indefer, 3) of ~ of the band, which are both considered equab.tdhe effect
one of these matrices. Thep s is potentially non-zero if and of this pseudo-band structure on the GE algorithm (Section
only if (M >B8—a>0)or(a—p8>z—M).Now, H[i][j] [I-B) is described below.
is the element with indeXy;, y;) of the (z;,y;)-th circulant ~ Thanks to the band structure of the matrix, each FE iteration

matrix composing?. ThereforeH [i][;] is potentially non-zero (i.e. elimination of non-zero subdiagonal entries in a column)
iff (M >y;—y, >0)or(y;—y; >2z—M). requires onlyO(q) symbol operationsper iteration. The cost
From the first inequality, we obtain: of FE is thereforeO(¢n’) symbol operations. After the FE

step, the system has a band of width- b over the diagonal

M = Yi —Yi > 0 (because of rows permutation), and a column block composed
aM > $(byj)—ay; = 0 of the ¢ last columns of the system (see figlie 3).

In addition, we have: > z; — %x; > —a; therefore: Now, erased symbols are recursively recovered by the BS
step, starting from the erased symbol corresponding to the
a(M+1) > by +zj)—ayi—x; > —a last column, back to the erased symbol corresponding to the
a(M+1) > 5 = > —a first column. Each recovered symbol has to be substituted in

From the second inequality, we obtain: the equations it is involved in. Symbols corresponding ® th

last ¢ columns are each one involved in’ equations, while
Yi—y; =2 z2—M symbols corresponding to the first— ¢ columns are each one
ayi — ¢(by;) = az—aM involved in ¢ equations. Therefore, the overall cost of the BS

Again, tacking into account that > z; — %z; > —a, we get: 1S O(gm’ +(n’ —q)(q+b)) = O(q(m’ +n') +bn’ — > — qb))
symbol operations.
ay; + xi — (by, + %) > az—a(M+1) Sinceq andb are negligible with respect to’ andn»’, and
=3 =z az—a(M+1) m' ~ n' ~ m, we conclude that the resolution of the system
Therefore H'[i'][j’] is potentially non-zero if and only if requiresO((2q + b)m) symbol operations. Therefore the QC
(a(M 4+1) > 25 —i' > —a) or (i’ — &5/ > m —a(M + 1)), Structure yields a complexity gain by a factorf/(2q + b)
which implies that(i’, j) is inside the pseudo-band ¢f’.  With respect to unstructured matrices.
]
Although this result holds for any Quasi-Cyclic code, the IV. CODE DESIGN

pseudo-band structure will be “visible” only jf andg are  This section focuses on the design of QC-LDPC codes,
significantly smaller tham: andn, respectively. This happenspy trading-off performance and complexity constraintsc Fi
only if M is significantly smaller than, hence, in Section IV, some base matrix3 with size a x b, and let M be the
we will introduce Quasi-Cyclic codes featuring an appraf@i maximum value of its non-negative entries. Using the pseudo

choice of the base matrix coefficients. band transformation of expanded matrices, it follows from
the above section that the complexity of the ML decoding
B. Complexity of Gaussian Elimination scales linearly with the code dimensidn(or, equivalently,

tge expansion factat). Although this is an excellent result in
% erms of decoding complexity, we will see later (Sectigh V)
éhat for long codes such a code design yields poor perforenanc

During the ML decoding, the linear system to be solved
represented by the decoding mati¥, which is am’ x n/
matrix (" < m’ < m) composed of a subset of the row

and columns ofH’. Consequently/, inherits the pseudo- sgeming that a symbol operation corresponds to a sum betweenows,
band structure off’, as illustrated at Figurel 2. Although theright-hand side term included.



with both IT and ML decodings. This is explained by the
fact that the width of the pseudo-band, which depends only
on a,b, and M, becomes too thin with respect to the matrix
dimensions for large values af. Such a thin band results
in inappropriate graph topoIogEﬁor the IT decoding (more
short cycles and smaller stopping sets) and, simultangatis!
reduces the probability off. (the ML decoding matrix) being
full-rank. In order to avoid such a situation, we propose ttég. 4. Example of a QC parity check matrix (NB: the bottomhtigplock
use of a base matrix with variable non-negative entrieshiit 'S 2 staircase matrix).

such a matrix, only the-1 entries are fixed. Equivalently,
the indexes of non-negative entries are fixed, but not their
values, which may vary with the expansion factosuch that ~ We have performed experiments to assess the gains provided
to ensure that the width of the pseudo-band is not too thinPy the QC structure both from an erasure correction capgbili

Pseudo-band widthin [L1], [12], Studholm and Blake 29 decoding complexity points of view.
conjectured that a matrix with a band of widh/%, filled
with 2log k& symbols per column, is full rank with probability A. Experimental setup
close to that of fully random matrices. Following this idea

V. EXPERIMENTAL RESULTS

' The QC-LDPC codes considered are using a base matrix

we setq = Cvk. This impliesM = C\/%, where R = having a size5 x 15 matrix (Figure[@), which is the minimum

k/n is the code rate, and' is a positive constant. The ML size for a rate2/3 RRA matrix with a source node degree

decoding with standard GE of such a code therefore requikagual to5.

O(kv'k) row/symbol operations. Even if the column degree In order to identify the influence of the QC structure

does not follow the recommendation lafc. cit,, it is chosen and band width on the decoding performance, we consider

sufficiently large (see below) to provide excellent con@tt four code ensembles. These codes are built from the same

capabilities (Sectiof V). In addition thé parameter can be base matrix, but using different choices for the non-negati

adjusted to find a tradeoff between error correction cajtisil entries of B (and also a different expansion technique for

and complexity. the protograph codes, see below). There are two reasons for
Base matrix structureWe use a Regular Repeat Accullsing a small base matrix. First, the length of the extended

mulate [3] (RRA) quasi-cyclic structure in order to benefigode is a multiple ob, hence, smali andb allow the finest

a linear time encoding. The parity side of the base matrain for the length and the dimension of the extended codes.

has a double-diagonal structure, which will be referred @econd, the band width linearly depends on the base matrix

as staircase Consequently, the extended parity-check matrimensions and/, which should be large enough to produce

inherits a staircase structure by blocks, which allows to r@ sufficiently large range for the random distribution of the

cursively build all the parity symbols with a linear numbepase matrix coefficients. Therefore, for a given bandwidth,

of symbol operations. Hybrid IT/ML decoding for RegulaiS chosen as small as possible to maximize

Repeat Accumulate LDPC codes has been studied in [2], ahae following code ensembles are considered:

more particularly the impact of the source node degree on theband QC LDPCcodes, our proposal. The non-negative

decoding performance. A value offor this degree is consid-  entriesb; ; can take any value in the rangde, ..., 3/z],

ered as a good compromise, as it allows excellent perforenanci.e. the maximum valueM = 3./z. The factor3 has

under ML decoding, with good enough performance under IT. been chosen following a tradeoff between error correction

Base matrix entriesThe values of non-negative entries of capabilities and complexity. These codes are QC-LDPC
the base-matrix are randomly chosen fr@m . ]\/[}’ where featunng a “visible” pseudO'band structure, with a width
the maximum value\/ depends on the expansion factgras  that depends on the code dimension (Sedfion IV).
explained above. Such a random choice simplifies the cotie/nconstrained QC LDPCcodes. The non-negative en-

generation and does not require an expensive optimization f tries b; ; can take any value in the range,...,z], i.e.
the non-negative entry values. This is an asset when coded! = z. These codes does not exhibit a “visible” pseudo-
need to be produced on the fly, in real time. band structure (pseudo-band is too wide).

Additional optimization:If the last element of the stair- ¢ congtant band-width QC LDPCques. The non-negative
entriesb; ; can take any value in the range,..., M|,

case is expanded into a circulant matrix, the correspondinthereM is a fixed constant, which does not depend on
z columns of H are all of degree one. In order to avoid the code dimension. We chose the vall — 42 that is

the negative impact of degree one columns on the decodin )
performance, the last element of the staircase is itsetirced %?rzglntsci)ot:; iogggzp?_?ggg \clgljueesfsa);%ngl_%%é[z‘sact?fring

into a staircase x z matrix. An example of such a parity check hi do-band for | | f
matrix is represented at figui@ 4 a very thin pseudo-band structure, for large va ueg.o
: e protograph LDPC codes. They are built from the same
base matrixB, but non-negative entries are expanded into

SRemind that the pseudo-band structure is obtained by asiropl/column randpmz X z permutation matrices, instead of circulant
permutation ofH. matrices. These codes do not have a pseudo-band structure.



For the reason preser_lted in secfiom IV,_ all these codesréea_tu 1.014 BInd OCLOPCHL o™
azxz sta!rcase matrix at the bottom right. In order to avoid 1013 unconstrained 82 LD ML o ke "
consideration on the loss model, the symbols are randomly 1.012 Protograph LDPC ML 5. o
permuted before the transmission on a memoryless erasure . A
channel. For each test the results of at |6t experiments = N B
is averaged. Since we are considering code ensembles, the; 101
seed used to construct the parity check matrix is different f ; 1.009 J
each experiment. § 1.008 el
° 1007 |5 e

B. Erasure recovery capabilities 1.006 '\"S?f;j&’

The average inefficiency ratio, defined as the number of 1.005 R i e e S
symbols required to complete decoding over the code di- 1.004

0 5000 10000 15000 20000 25000 30000 35000 40000

mension, is presented as a function of the code dimension code dimension (k)

at figure[® for the IT decoding, and at figurk 6 for the ML
decoding. Fig. 6. Inefficiency ratio as a function of the code dimensist. decoding

First of all, we observe that theonstant band-with QC (R =2/3).

LDPC codes exhibit the worst performance, under both Idode dimensiot: = 2000. In the waterfall region, the different
and ML decodings. This is explained by the fact that the pariturves are almost indiscernible and close to the theotetica
check matrix is concentrated on a pseudo-band, which is |@it. While no error floor is visible (down tol0—°) for

thin with respected to the matrix dimensions. Consequentjhconstrained QC LDP@odes, thdand QC LDPC constant
codes from theconstant band-with QC LDP@nsemble con- phand width QC LDPCand protograph LDPCcodes present
tain more short cycles and small stopping sets than codes fran error floor at a failure probability ofo—5. However, this
the other ensembles, which leads to a degraded performaggey fioor is sufficiently low for practical applicationspcit

under the IT decoding. On the other hand, the concentrati@noffset by a lower decoding complexity, as shown below.
of the parity check matrix on a thin pseudo-band decreases th
probability of the ML decoding matrix being full-rank, witic ‘ ‘
explains the performance under the ML decoding. s unconstrelasd OG LOPE —~ -
We also observe that under the ML decoding, the average [ o e aronh LDPS r
inefficiencies ofBand QC LDPC unconstrained QC LDPC , 01
and protograph LDPCare very close. Thus, even Band
QC LDPC codes are more constrained, they are stitdom
enough such as to provide ML performance close to that of
unconstrained codes. This also confirms the conjectures in
[11], [12], in the sense that the band width should depend
on the code dimension in order to provide ML performance
close to that of unconstrained codes. Under the IT decoding,
the Band QC LDPCcodes show a slightly better inefficiency
ratio than the other two code ensembles. 1e-07
Figure[T shows the failure probability of the ML decoding

(codeword error rate) as a function of the loss percentage fo
Fig. 7. Block error rate W.R.T. channel loss percentageeuil decoding

0.001

0.0001

1le-05

decoding failure probabilitiy

1le-06

20 22 24 26 28 30 32 34
loss percentage

1.16 T T T T T (k‘ = 2000, R = 2/3)
Band QC LDPC IT —&—
unconstrained QC LDPC IT -- -o-- -
114 constant bandwidth QC LDPC IT ---2--- . ) .
Protograph LDPCIT C. Algorithmic complexity
1.12 ks A A, . . L
° e S ° : The algorithmic complexity is evaluated by mean of number
R o of row/symbol operations. At figufg 8, one can see that for low
ws LT e e lee B BB -8 .
2 108 E\m . U WSO SR R:EE=S 1oy St channel loss percentage, the number of row/symbol opesatio
. ~f . = —F— BB . . . . .
S h is low (the IT decoding is sufficient). When the channel loss
s 106 percentage increases, the number of row/symbol operations
104 increases because the ML decoding is activated more and more
often. The number of operation under IT decoding is similar
102 for all the codes, since there parity check matrix have the
N same number of ones. However, once the ML decoding is
0 5000 10000 15000 20000 25000 30000 35000 40000 activated, theBand QC LDPCcodes clearly outperform the
code dimension (k) protograph LDPCand unconstrained QC LDP@odes. This

Fig. 5. Inefficiency ratio as a function of the code dimensiihdecoding IS @ direct consequence of the “visible” pseudo-band sirect
(R=2/3). of the decoding matrix, that allows to reduce the complexity
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Fig. 8. Number of row/symbol operation performed duringatikeg W.R.T
loss percentagek(= 30000, R = 2/3).

VI. CONCLUSIONS

In this paper we presented an analysis of the ML decoding
of QC-LDPC codes over the erasure channel. We showed
that any QC matrix can be transformed into a pseudo-band
form, which allows for reducing the complexity of the ML
decoding. The complexity gain depends on the “visibility”
(width) of the pseudo-band, and the thinner is the band,
the less complex is the decoding. However, the band width
has to tradeoff between performance and complexity gain.
For this end, we proposed an ensemble of QC-LDPC codes
that possess excellent correction capabilities under the M
decoding (overhead of only.5%), while decoded with a
complexity of O(kv/k) in terms of row/symbol operations.
The gain in complexity increases significantly with the code
dimension, which allows ML decoding to be a realistic option
for longer LDPC codes.

Additionally, the quasi-cyclic construction and the pseud

of ML decoding. Forconstant band width QC LDP€odes band transformation can be generalized to any linear dogle (
the number of operations is even smaller, as their bandwidtbed not be low-density) in order to reduce the complexity of
(¢ = 42 x 15 = 630) is significantly smaller than that of thethe ML decoding.

Band QC LDPCcodes § = 164 x 15 = 2460).

We have plotted on figurE] 9 the number of row/symbol
operations performed by the ML decoding in the worst casg
(minimum number of symbols received for which the ML

decoding succeeds). As expect&hnd QC LDPCand con-
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