RAP Communication Networks, Algorithms & Probability Theory

Philippe Robert

2008-2011

Presentation

INRIA Team

N. Antunes	Visiting Prof.	2009–2010	
Y. Chabchoub	PhD Paris VI	2006–2009	
V. Collette	Assistant		
M. Feuillet	PhD Student	2009–	
C. Fricker	Researcher		
E. Leoncini	PhD Student	2010-	
Ph. Robert	Research Director		
J. Roberts	Research Director 2009-		
F. Simatos	PhD Student	2006–2009	
N. Sbihi	PhD Student	2010-	

External Collaborators

H. Mohamed	Ass. Prof. Paris X		
F. Guillemin	Orange Labs engineer		
D. Tibi	Ass. Prof. Paris VII		

RAP: General Objectives

- Design of Algorithms for Networks. Collaboration with Orange Labs. Significant Data Sets
- Development of Mathematical Methods
 To Study Performances of Algorithms
 Scaling Techniques of Stochastic Processes

Collaboration with Orange Labs

At the origin of the creation of RAP in 2004

 Collaboration on Few, Focused Research Topics

An Overview of the Evaluation Period

Algorithms

- ► IP Traffic Attack Detection
- Optical Networks Bandwidth Allocation
- Content Oriented Networks
 Traffic Management and Caching

Probability

Large Stochastic Networks
 Mean Field and Interaction of Time Scales

An Overview of the Evaluation Period

Maths: Large Stochastic Networks

Bandwidth Allocation

in Optical Networks

Efficient Optical Networks General Problems

- One light path on a given wavelength
- Light cannot be stored at nodes
- ▶ Highly dynamic context of the Internet
 ⇒ No complicated static assignments of light paths.

A Dynamic Bandwidth Allocation (DBA) Problem

Optical Networks The Pb. of Technological Assumptions

- Number of Transmitters/Receivers at sources/destinations ?
- Tunable Transmitters/Receivers ?
- Use of Delay Lines ?
- Large Nb of wavelengths ?
- Wavelength Conversion at Nodes ?
- ► ...

 \Rightarrow Strong impact on the design of DBA Algorithms.

Optical Networks Assumptions for our Studies

Simplest Setting to start with

- ► Passive components
- Algorithm for one wavelength

Optical Networks: PON

Optical Networks PON: Upward

Optical Networks PON: Upward

Optical Networks PON Multiple Wavelengths

Optical Networks PON DBA for Upstream

Basic mechanism: Gateway (GW) controls access

- Terminals send reports to GW. Report: QUEUE-SIZE
- GW issues grants to each terminal.
 Grant: Begin-Time/End-Time

Problems for current DBA algorithms:

 Performances depend on distance to furthest terminal. Optical Networks PON An Original Bandwidth Allocation

Basic Ingredients

- ► Adaptive Cyclic Algorithm.
- **•** Dynamic Allocation of Grants.

⇒ Maximal Capacity Region.

Optical Networks: Extensions

- Mesh Networks
 TWIN (Alcatel-Lucent) + our EPON DBA
- Wide Area Networks
 ⇒ Multipath Algorithm
 Patent with Orange Labs

Extension to Mesh Networks Analysis of Performances

Stochastic Models: Complex Polling Systems

- Multiple Servers (Wavelengths)
- ► Constraints on Location of Servers
- **Tools to Investigate Capacity**
 - Fluid Limits
 - Mean-Field Results

Content Centric Networks

Content Centric Networks

A New Paradigm for Internet (van Jacobson)

- Network does not connect nodes but provides Contents (Objects)
- ► Traffic: Interests and Data
- Additional Security Features
- ► A Software: CCNx

Content Centric Networks: Context

ANR Connect project with

- Alcatel-Lucent
- Orange Labs
- ► INRIA PLANETE + RAP Teams
- Telecom ParisTech
- Université Pierre et Marie Curie

Content Centric Networks: Caching

Contents may be stored in caches

Parameters

- Architecture/Sizes of caches
- Popularity Distribution of Contents
- Caching Policy

Some Data on Popularity Distributions A Torrent Site: demonoid.com

Some Data on Popularity Distributions Impact of Caching

Some Data on Popularity Distributions Impact of Caching

Caching in Content Networks

Large of orders of magnitude P-Byte: 10¹⁵ Bytes

	population	mean object	overall
	size	size	volume
Web	10 ¹¹	10 KB	1 PB
File sharing	10 ⁵	10 GB	1 PB
UGC	10 ⁸	10 MB	1 PB
VoD	10 ⁴	100 MB	1 TB

⇒ Very very large caches

Content Centric Networks RAP's Contributions

- Design and evaluation of traffic controls How to do without TCP Fairness and Service Differentiation
- Design and Evaluation of Replication and Caching Strategies Architecture to Store Contents Estimation of Hit Ratios

Scaling Methods for Stochastic Networks

RAP's Toolbox

Scaling Methods

Two Topics

► Mean-Field

Dynamical Systems — Stability Issues

Interaction of Time Scales
 Fluid Scalings
 Stochastic Averaging Principles

Scaling Methods (I) Mean-Field

Network with Large nb of Interacting Nodes

- Nb nodes $\nearrow +\infty$
- ▶ Behavior of a "typical" node ?

Evaluation Period: used to estimate

- Algorithms for IP Traffic
- Bandwidth Allocation in
 - 1. Optical Networks
 - 2. IP Networks
 - 3. Mobile Networks
- Bike Sharing Systems (Velib)

Scaling Methods (II) Interaction of Time Scales

- Different Time Scales drive behavior of a network (sometimes)
- Time Scales interact !

Evaluation Period

- Optical Networks
- PageRank Algorithms
- DHT (Storage Systems)
 Collaboration with INRIA Team REGAL
- Bandwidth Allocation in IP Networks

Interaction of Time Scales Stochastic Averaging

New examples

- Bandwidth Allocation in IP Networks
- DHT (Storage Systems)

Evaluation Period: Methods

- Significant Simplifications
- Some technical problems underestimated in current literature

- Attack Detection Software Prototype
- PON Simulator
- ► Forwarding Strategies in CCN Networks

Collaborations

► INRA

PhD thesis on queueing network models to study protein production

- Université Paris Denis Diderot,
 Pierre et Marie Curie,
 Paris Ouest Nanterre La Défense
- École Polytechnique, Telecom ParisTech
- ► CWI, Un. Twente, Stanford, Helsinki, Eindhoven, ...

Industrial Collaborations

- Orange Labs THANKS !!!
- Alcatel-Lucent ANR Connect & Alcatel-Lucent Bell Labs INRIA/Alcatel-Lucent Lab ?

Future Work

Optical Networks: Future work

- Multipath Algorithm at the Core
- Capacity of Multipath Algorithm
- ► Optical Technology in Data Centers

 European Project Proposal
 CELTICS-+ SASER with Orange Labs, Alcatel-Lucent, Siemens, Telecom Inst....
 Experimentation of Multipath Algorithm

Information Centric Networks (ICN)

- Architecture of ICN with Data Centers
- Impact of Cache Hierarchies
- ► Cache Size vs Bandwidth

- Collaboration with INRIA MAESTRO
- European Project Proposal: FP7-Scot with University of Eindhoven, CWI, Alcatel-Lucent, ...

Mean-Field (MF) Results

A generic problem: CV of Equilibrium in the MF limit ?

Further Examples of MF

- ► Bike Sharing Systems with Geometry
- **•** Equilibrium of Optical Networks
- ▶ Production of Proteins in Bacteria

Interaction of Times Scales Stochastic Averaging

Again a generic problem: Regularity of the continum of invariant distributions ?

Examples

- Bandwidth Allocation Algorithms
- DHT with geometry

C'est la fin