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A LONG-RANGE DEPENDENT MODEL FOR NETWORK TRAFFIC
WITH FLOW-SCALE CORRELATIONS
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� For more than a decade, it has been observed that network traffic exhibits long-range
dependence and many models have been proposed relating this property to heavy-tailed flow
durations. However, none of these models consider correlations at flow scale. Such correlations
exist and will become more prominent in the future Internet with the emergence of flow-aware
control mechanisms correlating a flow’s transmission to its characteristics (size, duration, etc.).

In this article, we study the impact of the correlation between flow rates and durations
on the long-range dependence of aggregate traffic. Our results extend those of existing models
by showing that two possible regimes of long-range dependence exist at different time scales.
The long-range dependence in each regime can be stronger or weaker than standard predictions,
depending on the conditional statistics between the flow rates and durations. In the independent
case, our proposed model consistently reduces to former approaches.

The pertinence of our model is validated on real web traffic traces, and its ability to accurately
explain the Hurst parameter is validated on both web traces and numerical simulations.

Keywords Heavy-tailed distributions; Long-range dependence; Network traffic;
Poisson process.

Mathematics Subject Classification Primary 60K30; Secondary 90B20.

1. MOTIVATION

In the last years, a considerable research effort has been devoted to
the mathematical modeling of network traffic, with particular emphasis
on statistical approaches. However, comprehensive modeling of all the
characteristics of the traffic is a very arduous problem for it encompasses
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334 Loiseau et al.

several difficulties of different natures, such as transport protocols, control
mechanisms, or complexity due to the users’ behavior. The design of
identifiable models, while sufficiently versatile to account for essential
characteristics of real traffic is therefore an important issue for many
applications such as the simulation of realistic traces for numerical studies,
or the detection of abnormal traffic behaviors.

An important step ahead in this direction was the discovery in 1993
of the self-similar nature of aggregate traffic time series at large time
scales[26,40]. Following up, several models appeared, proposing the heavy-
tailed nature of the activity periods (the flow durations) as a plausible
origin of self-similarity, and formalizing the relation between �ON, the
heavy-tail exponent of the flow-duration distribution and H , the Hurst self-
similarity parameter:

H = 3 − �H

2
, (1.1a)

where �H = min(�ON, 2)� (1.1b)

These seminal works opened up a vast debate regarding the
importance of the long-range dependence property in network-traffic
time series. Yet, it is now commonly reckoned that due to its large-scale
nature, long-range dependence only impacts the queueing performance
of large buffers (see, e.g., Ref.[33]) which are not so many in modern
networks. Nonetheless, the generation of realistic traffic traces remains
highly demanding in terms of reliable sources at the flow-level[4]. As a
result, the clear comprehension of the long-term correlations produced
by these models is not only interesting on its own, but it can also serve
other purposes, like characterizing the performance of load estimators,
or designing new procedures for load change detection[34]. Moreover,
as we will see, the model we propose takes into account certain traffic
features that the emergence of flow-aware control mechanisms in the
future Internet may significantly accentuate. We present our contribution
as a first step towards a better understanding of the impact of those
mechanisms on the traffic properties.

So far, all existing models that lead to relation (1.1), rely on the
simplifying assumption that all flows have the same (mean) throughput no
matter what their size (or duration). In particular, this implies that the tail
indices �SI and �ON of the flow-size and of the flow-duration distributions
respectively, are equal and thus, interchangeable in relation (1.1a). For
real world traffic, however, this independence assumption rarely holds, and
the tail indices �SI and �ON are different in general (as it has been observed
on web traffic since 1997[12,35]).

Several sensible causes can explain a possible statistical dependence
between the flows’ rates and durations (or sizes), among which the
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A LRD Model for Network Traffic with Flow-Scale Correlations 335

transient phase of the TCP protocol or the existence of mirror sites
to speed up large files transfer over the net, to cite only two. More
importantly, this flow-scale correlation is likely to become an inherent
feature of the future Internet as flow-aware control procedures will
advisedly condition the flows’ treatment (e.g., the transmission rate) to
their characteristics (e.g., their duration or their size).

In these conditions, relation (1.1a) is not ensured to be reliably usable
to predict the Hurst parameter of the aggregate traffic. Hence, a model
that explicitly includes the correlation between flow rates and durations
is lacking to understand the impact of these flow-scale dependencies on
aggregate traffic properties, and to accurately predict the resulting Hurst
parameter.

In this article, we address this challenge and we propose an extension
of prior models including the correlation between flows’ rates and
durations, that makes explicit the individual effects of �ON and �SI on self-
similarity. Flows are represented as a marked planar Poisson process. This
non-classical viewpoint allows us to simply calculate the autocovariance
function of the aggregate traffic’s instantaneous bandwidth and to deduce
the resulting Hurst parameter.

The rest of the article is organized as follows. We first briefly review
in Section 2 existing models that reproduce the long-range dependence
property of network traffic. In Section 3, we propose an extension of these
models which includes the correlation between flows’ rates and durations,
and we expose the theoretical derivations leading to the aggregate traffic’s
Hurst-parameter prediction. In Section 4, based on numerical simulations
and on recent web traffic traces, we experimentally demonstrate the
pertinence of our model and its ability to correctly predict the Hurst
parameter. Finally, we conclude in Section 5.

2. RELATED WORK

There exists a large number of models able to reproduce the long-
range dependence property[7,17]. We describe here only those which
explicitly ground the origin of long-range dependence in the notion
of flows. Following up Mandelbrot’s idea, these models rely on the
introduction of a heavy-tailed distribution of infinite variance. We
distinguish two categories of such models, which mainly differ in the flow
arrival process: the renewal models and the infinite source Poisson models.

2.1. Renewal Models

Renewal models are based on the same general setting firstly
introduced by Mandelbrot in 1969[32] in an economical context. Each
source, emitting only one flow at a time, is modeled as a renewal
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336 Loiseau et al.

reward process, where the inter-arrival time (i.e., the interval between
two consecutive flows) is heavy-tailed; and the reward is the rate of
the flow. Many variants of such models have been considered, mainly
differing in the distribution of the reward[27,28,42] (see also Ref.[17]). We
present here only briefly the particular variant where the reward strictly
alternates between 0 and 1: the classical on/off model[44]. This model
allows including the notion of idle time between the transmission of two
flows through the off periods. Moreover, on- and off-periods distributions
can have different tail indices �ON and �OFF. Both distributions are assumed
to have a finite mean (i.e., �ON, �OFF > 1), and at least one of these
distributions is assumed to have an infinite variance (i.e., �ON < 2 or �OFF <
2). We denote by W (n)

t the instantaneous rate of source n at time t (W (n)
t =

0 or 1), and define the cumulative input process from M aggregated
sources:

WTt =
∫ Tt

0

M∑
n=1

W (n)
u du�

Then, the two following limit theorems hold[43]:

lim
T→∞

lim
M→∞

WTt − ��WTt�

THM 1/2
= �BH (t) (2.1)

and

lim
M→∞

lim
T→∞

WTt − ��WTt�

T 1/�HM 1/�H
= c��H(t), (2.2)

where H is defined as in relation (1.1a) with �H = min(�ON, �OFF) < 2,
and � and c are constants. If both the on- and off-periods distributions
have finite variance, the limit process is an ordinary Brownian motion
(exhibiting no long-range dependence), no matter what the order of
the two limits. Here, BH denotes a fractional Brownian motion of Hurst
parameter H , that is a self-similar Gaussian process, whose increments
are stationary. Its increment process (called fractional Gaussian noise) is
said to be long-range dependent of Hurst parameter H , meaning that its
autocovariance function decays as a power law of index (2H − 2). The
result (2.1), which establishes the long-range dependence of the aggregate
traffic’s bandwidth in the Gaussian limit has been widely used in the last
decade to model network traffic, since taking first the limit on the number
of sources (i.e., aggregating the sources) shows more natural. Conversely
however, when time scale goes first to infinity, Eq. (2.2) shows that the
limit process ��H is a Lévy stable motion: a self-similar process with stable
marginals (i.e., non-Gaussian and heavy-tailed) and independent stationary
increments. In the case where M and T tend simultaneously to infinity,
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A LRD Model for Network Traffic with Flow-Scale Correlations 337

Ref.[37] gives conditions on the ratio between the growth rate of both
quantities that ensure one, or the other limit regimes (see also Ref.[18]

where an intermediate case with a ratio between these two conditions is
studied). In practice, when the number of sources and the time scale
are finite, Ref.[23] provides sufficient conditions on the aggregation levels
in both the horizontal (time) and the vertical (flows) directions, for the
Gaussian approximation to hold. One particularity of the on/off model
is that the flow arrival process is not Poisson in general[31]. However, if
Eq. (2.1) or (2.2) is rescaled in such a way that the idle off periods grow
with the number of sources, then the flow arrival process tends towards a
Poisson process[14]. In that case, the off durations (hence the index �OFF)
have no effect, and the model asymptotically becomes an infinite source
Poisson model. Before entering into details, let us mention that, whenever
�ON < �OFF, the predicted Hurst parameter does not depend on �OFF. This
particular situation was observed in early Internet traffic measurement[12]

and more recent measurement campaigns (see, e.g., Ref.[6] in the context
of social networks) also demonstrate that the distributions of inter-session
times have a lighter tail than that of session times.

2.2. Infinite Source Poisson Models

In the simplest version of the infinite source Poisson models, flows
arrive at the link as a Poisson process of rate �. For each flow, data
is transmitted at a fixed rate (arbitrarily set to 1) during a heavy-tailed
distributed random time with tail index �ON. This model is also known as
the M/G/∞ model that was originally considered in Ref.[10]. Amazingly
then, the same limit Eqs. (2.1) and (2.2) as for the on/off model are
obtained, when replacing the number of sources M by the flow-arrival
rate �, and posing �H = �ON (see Refs.[17,22]). Furthermore, it is shown in
Ref.[37] that the same conditions on the arrival rate and on the time scale
growths determine the two limit regimes. There exists many variants of
this elementary M/G/∞ model, which all rely on the same mechanism:
a Poisson arrival process and a heavy-tailed distributed duration of flows.
Differences mainly lie in the way data is transmitted within a flow (see
also a survey of infinite Poisson models in Ref.[20], and the references in
Ref.[37]). In Ref.[25], the authors consider an infinite source Poisson model
with a general form of “workload function” within a flow and establish the
Gaussian limit result. In Ref.[36], a similar model is considered (where the
“workload function” is called “transmission schedule”), and the authors
establish the alternative convergence towards a Lévy motion. The Poisson
shot-noise model developed in Ref.[3], is morally very similar to the two
previously introduced models. The “workload functions” or “transmission
schedules” are here termed “shots,” which still arrive according to a

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
o
i
s
e
a
u
,
 
P
a
t
r
i
c
k
]
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
0
:
2
4
 
3
 
M
a
y
 
2
0
1
1



338 Loiseau et al.

Poisson process. An application of this model is proposed in Ref.[38] where
the shape of the shot is representative of the AIMD (Additive Increase
Multiplicative Decrease) mechanism with Poisson losses. In Ref.[15], the
authors consider a model where the flow rate is a random variable that
remains constant over the full duration of the flow. The flow sizes are
drawn at random according to a heavy-tailed distribution of tail index
�SI and the rate variable, drawn independently of the size, follows a
finite-mean distribution. The flow duration is then also a heavy-tailed
random variable with the same index �ON = �SI, and the model leads
to a long-range dependent traffic with Hurst parameter H defined as
in relation (1.1). A similar model where the durations and the rates
are drawn independently is proposed in Ref.[16]. The last model that we
mention in the infinite source Poisson model category is the Cluster Point
Process (CPP) model[21], based on a discrete point process approach. Flows
are “clusters” of points (packets) and a flow-arrival time is determined
by the instant of its first packet. The flow-arrival process is Poisson, the
number of points in the cluster (the flow size) is heavy-tailed distributed
with index �SI, and points (packets) within a cluster (flows) follow a
renewal process with some inter-arrival distribution determining the mean
flow rate. From point-processes theory[11,13], the resulting aggregate traffic’s
spectrum is shown to correspond to long-range dependence with the same
Hurst exponent H as in relation (1.1a) with �H = �SI. As in the model of
Ref.[15], the flow duration here is heavy-tailed distributed with tail index
�ON = �SI, an equality that was disallowed in Ref.[12] by measurements
on real Internet traffic. This can be caused for example by the slow-
start mechanism which, allowing larger flows to reach a higher mean
rate, naturally yields a lighter tail for the flow-duration distribution. The
authors of Ref.[21] suggest the use of a multi-class CPP, where small flows
(mice class) would be allotted small rates and larger flows (elephant class)
higher rates. However, they do not develop further the implications on the
aggregate traffic, and the central question that we address in the present
work remains open: When flow-duration and flow-size distributions have
different tail indices, which specific role do those play in the origin and
intensity of long-range dependence of the aggregate traffic?

2.3. Planar Point Process Setting

Our proposed model is an infinite source Poisson model, where flows
are represented as a marked planar Poisson process. This setting was
originally introduced in the context of multifractal analysis in Ref.[5] to
extend binomial multiplicative cascades, and reused in Ref.[9], also to deal
with multiplicative processes. To the best of our knowledge, in the context

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
o
i
s
e
a
u
,
 
P
a
t
r
i
c
k
]
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
0
:
2
4
 
3
 
M
a
y
 
2
0
1
1



A LRD Model for Network Traffic with Flow-Scale Correlations 339

of additive processes, this approach was only used in the aforementioned
articles[15,16] to derive long-range dependence. Besides being very intuitive,
this formalism allows readily computing the autocovariance function in the
case of non-independent marks (rates).

3. A MODEL INCLUDING CORRELATION BETWEEN FLOW
RATES AND DURATIONS

3.1. Definitions and Notations

We consider the point process �(Ti ,Di), i ≥ 0� depicted on Figure 1,
where Ti represents the arrival time of flow i and Di its duration, and
we assume that it is a (planar) Poisson process of intensity �[10,24]. The
intensity � is a measure that fixes the mean number of points in any
region of the plane; for instance �(C(t1)) is the mean value of the random
variable formed by the number of points lying in the cone C(t1) (i.e., the
number of flows active at time t1, see Figure 1). If the density of � is

FIGURE 1 Setting of the model. Each point represents a flow. The x -coordinate represents the
start time Ti and the y-coordinate the duration Di . Ri is the rate of the flow. At time t1, the active
flows are those whose corresponding points on the graph lie in cone C(t1) (the left border of the
cones have a slope of −1).
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340 Loiseau et al.

constant over the plane, the point process is called homogeneous. Here, to
take into account the heavy-tailed distribution of the flow size, the density
of an infinitesimal square of size dt × dd centered on (t , d), takes on the
particular form:

�(dt , dd) =

Cdtdd
d �ON+1

if d ≥ dmin

0 otherwise
, (3.1)

where dmin > 0 is the minimal flow duration, C is a positive constant,
and �ON > 1 is the tail index of the flow-duration distribution. As �

depends on d , the point process is clearly non-homogenous (the smaller
d is, the higher the density). However, since � does not vary with t , the
arrival times Ti are independent of the durations Di and the resulting
traffic is stationary. With this particular form of the intensity measure
�, the planar Poisson process model is equivalent to an infinite source
Poisson model, with a finite flow arrival rate (� = ∫ ∞

d=0

∫ 1
t=0 �(dt , dd) <

∞) and independent durations drawn from a Pareto distribution of tail
index �ON. Each flow i emits data at a constant rate Ri ≥ 0, drawn at
random, over its full duration Di . The rates (Ri)i≥0 do form a sequence of
independent random variables, but in contrast to previous models (such
as the ones proposed in Refs.[15,16]), they are not assumed independent of
the durations (Di)i≥0. We will formalize the explicit statistical bond between
these two quantities later in this section, when it becomes necessary to
pursue the calculations. We designate by Si the size of flow i : Si = DiRi .

Let us consider two time instants t1 < t2 and let us introduce the
following notations (see Figure 1):

Wt1\t2 =
∑

(Ti ,Di )∈C(t1)\C(t2)
Ri , (3.2)

Wt1∩t2 =
∑

(Ti ,Di )∈C(t1)∩C(t2)
Ri , (3.3)

Wt1 = Wt1\t2 + Wt1∩t2 =
∑

(Ti ,Di )∈C(t1)
Ri , (3.4)

and similarly for the variables Wt2\t1 and Wt2 . The random variable Wt1 is the
instantaneous throughput at time t1 (rates summation of all active flows at
time t1). Wt1\t2 represents the traffic generated by flows active at time t1 but
no longer active at time t2, while Wt1∩t2 denotes traffic coming from flows
active at time t1 and still alive at time t2. We will use these two intermediate
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A LRD Model for Network Traffic with Flow-Scale Correlations 341

variables to facilitate our derivations, and we define the corresponding
means:

�W = ��Wt1∩t2� = �(C(t1) ∩ C(t2)), (3.5)

�W = ��Wt1\t2� = ��Wt2\t1� = �(C(t1)\C(t2)) = �(C(t2)\C(t1))� (3.6)

Last equality �(C(t1)\C(t2)) = �(C(t2)\C(t1)) simply comes from time-
shift invariance of measure �. Finally, with these notations, we have:

��Wt1� = ��Wt2� = �W + �W � (3.7)

With this setting, we now compute the autocovariance of the
instantaneous bandwidth Wt , in order to evaluate the Hurst parameter.
We recall that a stationary process is said long-range dependent of Hurst
parameter H if its autocovariance function decreases like 	2H−2 when 	
goes to infinity and where 1/2 < H < 1.

3.2. Computation of the Instantaneous Bandwidth’s
Autocovariance

With the notations introduced in the preceding section, we now
calculate the autocovariance function ��Wt1Wt2� − ��Wt1���Wt2� of the
instantaneous throughput Wt .

Lemma 3.1. If the planar point process �(Ti ,Di), i ≥ 0� is Poisson, then

��Wt1Wt2� − ��Wt1���Wt2� = ��W 2
t1∩t2� − ��Wt1∩t2�

2 = �ar �Wt1∩t2�� (3.8)

Proof. With our notations:

��Wt1Wt2� = ��Wt1\t2Wt2\t1� + ��Wt1\t2Wt1∩t2� + ��Wt1∩t2Wt2\t1� + ��W 2
t1∩t2��

Due to the Poisson assumption, the random variables Wt1\t2 ,Wt2\t1 ,Wt1∩t2 are
mutually independent, so that

��Wt1Wt2� = ��Wt1\t2���Wt2\t1� + ��Wt1\t2���Wt1∩t2�

+ ��Wt1∩t2���Wt2\t1� + ��W 2
t1∩t2�

= �2
W + 2�W �W + ��W 2

t1∩t2�

= (�W + �W )2 − �2W + ��W 2
t1∩t2�,

which readily yields the result in view of the definition of �W (Eq. (3.5))
and of Eq. (3.7). �
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Lemma 3.1 shows that this autocovariance only depends on the
variance of traffic generated by flows that are active at times t1 and t2.
It is quite natural and was noticed in Refs.[5,9] in a different context. To
complete the calculation of the autocovariance function, we then need to
compute �ar �Wt1∩t2�.

If the flows’ rates were all equal to 1, Wt1∩t2 would simply be the number
of points in C(t1) ∩ C(t2), and the variance �ar �Wt1∩t2� equal to �W (the
mean and the variance of a Poisson process are equal). The autocovariance
would then be entirely controlled by the value of �W . Before carrying on
the calculation, let us denote by N the random variable corresponding to
the number of points in C(t1) ∩ C(t2) and by

�N = ��N �, (3.9)

its mean. Then, the autocovariance function takes on the general form:

Lemma 3.2.

��Wt1Wt2� − ��Wt1���Wt2� = �N��R 2
i �, (3.10)

where it is implicitly understood that the expectation of R 2
i is computed in C(t1) ∩

C(t2).

Proof. To evaluate the value of �ar �Wt1∩t2�, we successively compute the
values of ��Wt1∩t2� and ��W 2

t1∩t2�.

��Wt1∩t2� = ����Wt1∩t2 |N ��

=
∞∑
k=1

�
{ k∑

i=1

Ri |N = k
}
�(N = k)

=
∞∑
k=1

k∑
i=1

��Ri |N = k��(N = k)

=
∞∑
k=1

k��Ri��(N = k)

= �N��Ri��

��W 2
t1∩t2� = ����W 2

t1∩t2 |N ��

=
∞∑
k=1

�
{( k∑

i=1

Ri

)2 ∣∣∣∣N = k
}
�(N = k)�
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By independence of the sequence (Ri)i≥0,

�
{( k∑

i=1

Ri

)2 ∣∣∣∣N = k
}

= �
{( k∑

i=1

Ri

)2}
= k��R 2

i � + (k2 − k)��Ri�
2,

so that

��W 2
t1∩t2� =

∞∑
k=1

(k��R 2
i � + (k2 − k)��Ri�

2)�(N = k)

=
∞∑
k=1

k��R 2
i ��(N = k) +

∞∑
k=1

k2��Ri�
2�(N = k)

−
∞∑
k=1

k��Ri�
2�(N = k)

= �N��R 2
i � + (�N + �2N )��Ri�

2 − �N��Ri�
2

= �N��R 2
i � + �2N��Ri�

2� �

Until now, we have not used the specific form of the measure �
(Eq. (3.1)), nor have we considered an explicit form for the correlation
between Ri and Di . The result of Lemma 3.2 depends only on the Poisson
hypothesis and on the independence assumption of the sequence (Ri)i≥0.
It shows that the autocovariance function is the product of two terms:
�N and ��R 2

i �. The first term �N (the mean number of points in C(t1) ∩
C(t2)) depends only on the measure � (i.e., on the points repartition). To
compute the second term ��R 2

i �, we need a functional model to describe
the correlation between Ri and Di .

Our goal here is to introduce a correlation which leads to different
tail indices �SI and �ON for the flow-size and for the flow-duration
distributions. As we already mentioned, independence between the two
random variables Ri and Di leads to identical tail indices, no matter what
finite mean distribution is chosen for Ri (see, e.g., Refs.[15,16]). Therefore,
different tail indices �SI �= �ON can only come from a statistical correlation
between Ri and Di . A naive choice could be to deterministically set
each flow rate to Ri = KD
−1

i , where 
 = �ON
�SI

. In that case, we have Si =
KD


i , which effectively leads to a heavy-tailed flow-size distribution with
tail index �SI different from �ON. However, assuming that a flow’s rate
is deterministically imposed by its duration is not realistic. That is why,
in our model, Ri is a random variable but whose mean and variance
are statistically conditioned to the flow duration Di . The conditional
expectation is set to ��Ri |Di� = KD
−1

i (
 > 0), as this is the sole
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344 Loiseau et al.

algebraic relation compatible with the desired heavy-tailed distributions
with different tail indices. As for the conditional variance, we also choose
to model its dependence on Di with a power law of the type: �ar �Ri |Di� =
VD�

i . Experimentally, this choice fits a larger number of real traffic data
than a constant conditional variance; from an analytic viewpoint, it permits
a simple analysis of long-range dependence in the aggregate traffic. Next
proposition shows that, provided a simple condition on 
 and �, the
prescription of these conditional moments indeed leads to a heavy-tailed
flow-size distribution, with tail parameter �ON



.

Proposition 3.1 (Flow-Size Distribution). Suppose that Di follows a
Pareto distribution with tail index �ON. Suppose that ��Ri |Di� = KD
−1

i and
�ar �Ri |Di� = VD�

i , with K and V two positive constants. If � < 2(
 − 1), then
the distribution of the flow size Si is heavy-tailed with index �ON



:

�(Si > s) ∼
s→∞

( s
K

)− �ON



� (3.11)

Proof. The proof is deferred to Appendix A. �

Remark 3.1. When � ≥ 2(
 − 1), there is no guarantee that the flow-size
distribution is heavy-tailed with index �ON



.

Remark 3.2. Because we clearly have ��R 2
i � = ����R 2

i |Di�� =
K 2��D2(
−1)

i � + V��D�
i �, the rate variable has finite variance if �ON > � and

�ON > 2(
 − 1). Moreover, it ensures that the autocovariance function of
the instantaneous bandwidth (Wt)t∈� exists, and also justifies the Gaussian
approximation for the traffic. Similarly, since ��Si� = ��Di��Ri |Di�� =
K��D


i �, the condition �ON > 
 warrants a finite-mean distribution for the
flow-size variable. This is consistent with a tail index larger than one in
Proposition 3.1 when � < 2(
 − 1).

We now have all the ingredients of our model to establish the algebraic
decay of the resulting autocovariance function.

Proposition 3.2 (Autocovariance Function of the Instantaneous Bandwidth
(Wt)t∈�). Let flows be modeled as a planar Poisson process with intensity � defined
as in expression (3.1). Assume that ��Ri |Di� = KD
−1

i and �ar �Ri |Di� = VD�
i ,

where K and V are two positive constants, and let:{
�′ = �ON − 2(
 − 1),
�′′ = �ON − ��

(3.12)
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If �′ > 1 and �′′ > 1, then

��Wt1Wt2� − ��Wt1���Wt2� = CK 2 1
�′(�′ − 1)

(t2 − t1)−�′+1

+ CV
1

�′′(�′′ − 1)
(t2 − t1)−�′′+1� (3.13)

Proof. First note that the conditions �′ > 1 and �′′ > 1 guarantee the
existence of the autocovariance function (see Remark 3.2), and recall
that ��R 2

i � = K 2��D2(
−1)
i � + V��D�

i �. Then, calculating the expectations
via direct integration with the explicit form of the density of measure �
(Eq. (3.1)) yields:

��D2(
−1)
i � = 1

�N
C

1
�′(�′ − 1)

(t2 − t1)−�′+1,

and

��D�
i � = 1

�N
C

1
�′′(�′′ − 1)

(t2 − t1)−�′′+1�

The result directly follows from Equation (3.10) of Lemma 3.2. �

Remark 3.3. If � ≥ 2(
 − 1) the result remains valid although the flow
sizes may not be heavy-tailed distributed with index �ON



.

Remark 3.4. As its autocovariance only depends on the time difference
(t2 − t1), the instantaneous bandwidth Wt is a second-order stationary
process, consistently with the time-shift invariance of the measure �.

Our main result lies in the algebraic decay of the autocovariance
function of Proposition 3.2, where two different regimes of long-range
dependence coexist. Before presenting real traffic traces supporting our
model choice, let us comment and elaborate on the specific form of this
autocovariance and its interpretation.

3.3. Interpretation

The autocovariance (3.13) is the sum of two power-law terms
decreasing with different exponents: −�′ + 1 and −�′′ + 1. We denote by
	∗ the value of (t2 − t1) for which these two terms coincide:

	∗ =
∣∣∣∣ �′(�′ − 1)
�′′(�′′ − 1)

· V
K 2

∣∣∣∣ 1
2(
−1)−�

� (3.14)
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Then, depending on whether (t2 − t1) stands below or above 	∗, one of
the two power laws dominates in Equation (3.13) and impose its decay
to the autocovariance function. In terms of long-range dependencies,
each exponent corresponds to a Hurst parameter as in Eq. (1.1a) (H =
3−�H

2 ), where �H is either equal to �′ or to �′′. Rather than plotting the
autocovariance (3.13), we represent in Figure 2 the corresponding log-
diagram[2]. A log-diagram corresponds to the logarithmic variance log S(j)
of the wavelet coefficients calculated at scale j (morally equivalent to the
variance of the process aggregated in consecutive time windows of size 2j�,
where � is the data granularity). For a long-range dependent process of
Hurst parameter H , the corresponding log-diagram increases linearly with
slope 2H .

FIGURE 2 Generic log-digram of the aggregate traffic: log S(j) versus time scale j (plain line).
The oblique dashed line represents power-law evolutions of the autocovariance (3.13) with indices
�′ and �′′ defined in Equation (3.12), which correspond to the two distinguished regimes of long-
range dependence (see text). Vertical dashed lines materialize the thresholds �ON and 	∗.
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Figure 2 emphasizes the two domains separated by 	∗:

• At scales larger than 	∗, the smaller tail index �H = min(�′, �′′) governs
the autocovariance decay, meaning that it is the larger Hurst exponent
that characterize the long-range dependence. This situation, referred
to as asymptotic long-range dependence, holds for time lags going
to infinity; it corresponds to the rigorous definition of long-range
dependence.

• Conversely, at scales smaller than 	∗, it is the term corresponding
to the larger tail index �H = max(�′, �′′), i.e., to the smaller Hurst
exponent, which dominates the autocovariance. To contrast with the
asymptotic long-range dependence, this property is called pseudo long-
range dependence as it is holds only over a finite scale range, bounded
from above by 	∗ and from below by the mean flow duration �ON. Indeed,
as alluded in Ref.[21] and experimentally validated in Ref.[29], �ON is a
reasonable lower scale bound beyond which long-range dependence due
to the heavy-tail distribution of flow duration is manifest.

The prevalence regions of these different Hurst parameters, as well
as the comparison with long-range dependence of usual infinite source
Poisson models, depend on the parameters 
 and �.

Influence of parameters 
 and �. As a first remark, notice that if

 = 1 (�′′ = �ON) or if � = 0 (�′ = �ON), the classical relations (1.1)
straightforwardly apply to the respective scale domains. They even extend
to the entire scale axis when 
 = 1 and � = 0, our model coinciding
then to the usual infinite source Poisson model with (second order)
mutually independent rates and durations. We denote by H0 = 3−�ON

2 the
corresponding Hurst parameter that we take as a reference to discuss the
impact of 
 and �.

In the general case, 	∗ delineates two long-range dependent regimes
determined by �′ and �′′. In terms of long-range dependence, our
results are valid for all values of �′ and �′′ larger than one. Yet, we
restrict our discussion to the case �′ < �′′ (i.e., � < 2(
 − 1)), guaranteeing
the flow-size variable to be heavy-tailed distributed with index �SI = �ON




(Proposition 3.1), as it is commonly observed on real traffic traces.
Then, the pseudo long-range dependence regime has a Hurst parameter
H = H0 + �

2 , whereas the Hurst parameter for the asymptotic long-
range dependence regime reads H = H0 + (
 − 1) and depends on the
conditional mean rate exponent 
:

• If 
 > 1 (�SI < �ON): This is the case that has been observed on Internet
traces[12] and that we also experience with the web trace of next section.
In average, the achieved rate increases with the duration of the flow, a
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348 Loiseau et al.

situation due, for instance, to the transient behavior of some protocols
that penalize short connections. The asymptotic long-range dependence,
controlled by the tail index �H = �′ < �ON, is then stronger than the
one predicted by standard models that disregard flow-scale correlations.
It is worth noticing that, depending on the 
 value, �H can possibly
be smaller, equal to, or larger than �SI. This means that the tail index
governing the long-range dependence does not necessarily lie between
�SI and �ON, and can be smaller than both these tail indices.

• If 
 < 1 (�SI > �ON): This situation, where the mean transmission rate
of a flow decreases with its duration, could happen with scheduling
policies that aim at prioritizing short flows. In this case, the asymptotic
long-range dependence, controlled by the tail index �H = �′ > �ON, is
weaker than the one predicted by existing models. It demonstrates
that it is theoretically possible to reduce the long-range dependence
strength in aggregate traffic, by activating appropriate flow-aware control
mechanisms. Finally, notice that if � > 2(
 − 1), the case 
 < 1 leads to
a weakened (pseudo) long-range dependence in the intermediate scale
domain.

Besides their effect on the Hurst exponents, parameters 
 and � can
also impact the threshold 	∗, although this latter mainly varies with the two
constants K and V .

Influence of the mean K and of the variance V. The ratio V
K 2 is mostly

prominent in the determination of the frontier 	∗ separating the two long-
range dependence regimes. Its effective role, however, is conditioned to 

and �: 	∗ increases with V

K 2 when � < 2(
 − 1) and it decreases otherwise.
In both cases however, a large variance systematically extends the scale
range where the Hurst parameter is governed by the conditional variance
of the flow rate (H = H0 + �

2), whereas a small variance broadens the scale
range where the Hurst parameter is determined by the conditional mean
term (H = H0 + (
 − 1)). In the limit case V = 0, only this latter regime
remains.

Let us mention that the time lag 	∗ where the two autocovariance terms
intersect is proportional to the characteristic flow duration for which mean
squared rate and variance rate are equal:

d∗ =
∣∣∣∣ VK 2

∣∣∣∣ 1
2(
−1)−�

� (3.15)

Both quantities differ by a multiplicative factor
∣∣∣ �′(�′−1)
�′′(�′′−1)

∣∣∣ 1
2(
−1)−�

,
independent of K and V . This is coherent with the interpretation
of the scale regions where the Hurst parameter is either prescribed
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by the conditional variance H = H0 + �

2 or by the conditional mean
H = H0 + (
 − 1). Notice though, that whenever the multiplicative factor
significantly differs from one, only 	∗ is meaningful to determine the
frontier between the two regimes.

Finally, let us stress that we limited our study to the long-range
dependence of aggregate traffic, a second-order statistical property
fully determined by the autocovariance function. As a result, the first
two conditional moments ��Ri |Di� and �ar �Ri |Di� were sufficient to
identify this correlation structure unambiguously. To investigate statistical
properties of the instantaneous bandwidth at higher orders, finer
characterization of the conditional distribution �(Ri ∈ dr |Di) would be
needed.

Remark 3.5. To model real traffic more accurately, one may want to use
an heterogeneous mixture of a certain number of different classes k, with
the same power-law conditional moments but with different indices 
k and
�k . Each class leads to a set of new tail exponents �′

k = �ON − 2(
k − 1)
and �′′

k = �ON − �k . Assuming that traffics from the different classes sum
independently, it is clear that the smallest of all these indices asymptotically
governs the autocovariance decrease and therefore imposes the long-range
dependence parameter as in (1.1a). The correlation structure however,
should behave more intricately in the intermediate scale range.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section drives an empirical study of our traffic model. Based
on real web traces, we first present experimental evidences that support
our choices, and demonstrate the ability of our approach to predict the
Hurst parameter of aggregate traffic. Then we present a more systematic
validation of our results based on numerical simulations.

4.1. Real Web Traffic

We use a trace acquired at the output link of the in2p3 research center
(Lyon, France), with the capture tool MetroFlux[30]. The traffic is captured
from the VLAN corresponding to RENATER (french national research
and education network) web traffic, which is encapsulated in the 10Gbps
output link of in2p3. Although we captured more than one day of traffic,
we restrict our trace to a 30 minutes stationary trace, corresponding to the
incoming traffic between 3pm and 3:30 pm on January 18, 2009. The mean
throughput in this period is 127.3Mbps, the mean flow duration is 0.12 s
and the mean flow size 16 kBytes. The traffic variations are displayed on
Figure 3(a). While it is essentially composed of web activity, this traffic also
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350 Loiseau et al.

encompasses an unusual large number of elephant flows, produced by the
particular nature of experiments carried out at the in2p3 centre.

To analyze flow-level characteristics, we recover the flow sequence from
the packet level trace using the widely used definition of a flow: a flow is a
set of packets sharing the same source and destination IPs and ports, the
same protocol, and with no inter-packet gap larger than some timeout that
we set here to 100ms. This relatively small value of the timeout was chosen
because a thorough analysis of this particular trace revealed that many TCP
connections are kept open even when idle, as they certainly use the TCP
keep-alive protocol[8]. The high number of such connections is likely to be
specific of the activities carried out at the in2p3 research center. On the
other hand, most of the traffic is intra-continental with a corresponding
RTT smaller than 100ms. Nonetheless, we also performed the analysis with
a timeout set to 1 s and verified that the results remain coherent and quite
similar.1 More generally though, as it was recently shown in Ref.[41], the
flow definition can have a dramatic effect on model matching; and the one
we propose here may fail at fitting the data if one adopts a different flow
definition.

Figures 3(b) and (c) display the flow-size and flow-duration
distributions. As expected, both exhibit power-law shapes, but with
different tail indices: �SI = 0�88 and �ON = 1�30. These estimates were
obtained with a state-of-the-art non-parametric wavelet method proposed
in Ref.[19], using the 5th derivative of a Gaussian wavelet. To avoid the
bias introduced by partially observed flows, we retained only those whose
starting and ending dates fall in the analyzed 30-minutes trace. Inevitably,
this amounts to truncate the distribution tail, reducing thus the effective
scale-range used for the tail exponent estimation. In accordance with
our model, the empirical conditional mean and variance rate plotted
in Figures 3(d) and (e) respectively, obey a power-law dependence with
respect to the flow duration, over a significant scale range. We observe a
small number of flows (22 in the analyzed trace) whose duration is larger
than 100 s and yet, that present a small rate. As these flows correspond to
control traffic and they do not significantly contribute to the overall data
traffic, we disregard them in the sequel. In Figure 3(d), a superimposed
straight line with slope 
 = 1�48, equal to the ratio between the tail indices
�ON and �SI, closely matches the estimated slope (
 = 1�45) obtained
from a direct least-square fit of the data within the scale interval [1, 90] s.

1The quantities estimated when the timeout is set to 1 s are as follows: �SI = 0�99, �ON = 1�33
(estimated with the method of Ref.[19]), 
 = 1�34 (deduced from �ON/�SI), to be compared to the
value 1�31 (estimated from a least-square regression of Fig. 3(d) adapted to the new timeout), � =
0�29 (estimated from a least-square regression of Fig. 3(e) adapted to the new timeout), K = 104�35

and V = 1010�32 (estimated from the same least-square regressions). We deduce 	∗ ∼ 2000 s and the
predicted Hurst parameter in the pseudo long-range dependence regime H = 0�98, fully consistent
with the estimated value.
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FIGURE 3 Characteristics of the in2p3 trace: (a) Aggregate bandwidth evolution (granularity
10ms); (b) Flow-size distribution, complementary cdf (dashed black: Pareto with tail index �̂SI =
0�88 estimated with the method of Ref.[19]); (c) Flow-duration distribution, complementary cdf
(dashed black: Pareto with tail index �̂ON = 1�30 estimated with the method of Ref.[19]); (d)
Conditional mean rate (dashed black: model ��Ri |Di� = KD
−1

i with 
 = �̂ON/�̂SI and value K =
105�34 estimated by least-square fit in the range [1, 90] s); (e) Conditional variance of the rate
(dashed black: model �ar �Ri |Di� = VD�

i with values V = 1011�97 and � = 0�43 estimated by least-
square fit in the range [1, 90] s). The mean flow duration is 0.12 s and the mean flow size is
16 kBytes. In plots (d) and (e), logarithmic binning was used.
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The estimated value � = 0�43 corresponds to the least-square fit of the
conditional variance rate over the same scale interval, and, together with

, they meet the condition � < 2(
 − 1) of Proposition 3.1. Let us mention
that the estimation of �, as well as that of �SI, �ON and 
 to a lesser extent,
may be relatively sensitive to the chosen scale range for regressing the
data. For different regression ranges within the interval [1, 100] s, the
estimate of � varies roughly from from 0.2 up to 0.5. No doubt that in
our case, this sensitivity is accentuated by the quite short length of our
stationary trace that leads to only a limited scale domain.

From the definition of Eq. (3.12), we then deduce the exponents �′ =
0�34 and �′′ = 0�87. Theoretically, �′ < 1 and/or �′′ < 1 correspond to a
diverging autocovariance (Eq. (3.13)) as time lag (t2 − t1) goes to infinity;
but since we have a finite-size trace, the distributions are bounded and
tail indices smaller than one (or Hurst parameter larger than 1) can be
observed over a finite scale range. As for �, we estimate K = 105�34 and
V = 1011�97 from the least-square fits of the plots in Figures 3(d) and 3(e),
which leads to the threshold 	∗ ∼ 1,000 s.

To investigate the long-range dependence of the aggregate traffic,
we use the wavelet-based method described in Ref.[2], with a Daubechies
wavelet with three zero moments. This method provides a robust
estimation of the Hurst parameter within a confidence interval derived
under normal assumption (we checked that the traffic was fairly gaussian,
with a kurtosis value equal to 3.15 at an aggregation scale of 10ms).
Figure 4 displays the log-diagram of the aggregate traffic bandwidth
calculated at the granularity � = 10ms. It follows a linear trend that is
characteristic of an underlying scaling law, and whose slope reflects the
Hurst parameter. By linear regression over the scale range [1�28, 40�96] s
(which lies far beyond the mean flow duration of 0.12 s), we estimate
a Hurst exponent Ĥ = 0�92 ± 0�06. The upper bound of this regression
scale interval stands far below the threshold 	∗ between the two long-
range dependence regimes. Under these circumstances, Proposition 3.2
predicts a dominating Hurst exponent H = 3−�′′

2 = 1�06, which is slightly
higher than the estimated value. In the present case, relation (1.1a)
obtained with standard infinite source Poisson models, would yield a
similar Hurst estimate, slightly lower than the estimated value (0.85).
Nonetheless, we believe that the elaborated model of Section 3 fills a gap
in traffic modeling and explains why approximate models that disregard
flow-level correlations, can still apply in restricted scale ranges. Moreover,
our analysis sheds a new light on the scaling observed from the real
trace: it is not reminiscent of strict long-range dependence, but of pseudo
long-range dependence. The value observed for the threshold 	∗ indicates
that asymptotic long-range dependence can actually not be observed on
realistic-length stationary traces, at least with parameters similar to the ones
observed in our trace. Here, it is also worth noticing that our study comes
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FIGURE 4 Log-diagram of the in2p3 aggregate traffic bandwidth in time windows of size � =
10ms. The estimated value of the Hurst parameter is Ĥ = 0�92 ± 0�06 (scale range of estimation:
[1�28, 40�96] s). Recall that the mean flow duration is �ON = 0�12 s.

to the same conclusion as in Refs.[1,41], but using a different modeling path.
As discussed above though, this conclusion may vary with the considered
flow definition: then, it is possible that another choice would lead to a
smaller 	∗ observable in practice. Future Internet traffic may also exhibit
smaller 	∗ due to increasing mean rates. Should this be the case, our
model would certainly constitute a relevant tool to predict the long-range
dependence in the asymptotic regime beyond 	∗.

As a last remark, let us point out that the flow-arrival process (i.e., the
count process associated with the point process �Ti , i ≥ 0�) is not strictly
Poisson, but exhibits a slight long-range dependence with an estimated
Hurst parameter of 0.65. However, after we shuffled the flow arrival times
to annihilate correlations in the flow-arrival process, we verified that long-
range dependence observed on the aggregate traffic remained strictly
unchanged. This is fully consistent with natural intuition drawn from the
knowledge of on/off models, and may also be explained by higher-level
structure such as sessions, as it is shown in Ref.[41].

With this experimental set, we were not able to confirm the existence
of a second long-range dependence regime, as the available data size did
not permit to scrutinize scales beyond the critical time lag 	∗. To more
thoroughly study the ins and the outs of Proposition 3.2, we now resort to
numerical simulations.
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4.2. Model Validation via Simulations

In this section, we use MATLAB simulations to generate controlled
traffic traces in order to demonstrate the ability of the model proposed
in Section 3 to accurately predict the Hurst parameter in different scale
ranges and for different sets of parameters.

Our simulations consist in traffic from an infinite source Poisson
model, where we consider sufficiently large flow arrival rates to reach
the Gaussian limit case[23] (see Section 2). Morevover, we use a fluid
simulation with constant bitrate over the full duration of the flow. Infinite
source Poisson models with independent but intra-flow-varying rates were
proposed (see Section 2.2), leading to no difference regarding large-
scale correlations. It has also been experimentally verified in Ref.[29] that
the protocol specificities only affect short time-scale properties, but leave
unchanged traffic features at coarser scale, and in particular the long-
range dependence property that we are interested in here. We therefore
do not consider such intra-flow-level refinements that fall out of the
present scope.

4.2.1. The Two Long-Range Dependence Regimes
Due to the lack of long-term stationarity, our previous analysis of a

real trace was confined to the pseudo long-range dependence regime.
To overcome this limitation, we generate a stationary trace possessing a
flow structure very similar to the one of the in2p3 trace: Poisson flow
arrival, �ON = 1�2, �ON = 0�12 s, 
 = 1�4, � = 0�1, K = 105�4, V = 1012�3, but
with corresponding smaller values of 	∗ ∼ 300 s and of d∗ ∼ 100 s. We also
generate the trace over a much longer period (140 hours). The flows’ rates
are drawn at random according to a family of gamma distributions that
adequately condition the rate’s mean and variance to the flow duration
(we observed that a gamma assumption is also reasonable for the in2p3
trace of previous section).

The resulting log-diagram of the bandwidth at granularity � = 0�05 s
is displayed on Figure 5. Like the theoretical log-diagram of Figure 2,
it clearly reveals the two long-range dependence regimes discussed in
Section 3.3. Moreover, the quantities 	∗ and d∗ seem to be reasonable
separators of these two domains. In both domains, the estimated Hurst
parameters are in good agreement with the theoretical values predicted
by the model of Section 3: Ĥ = 0�98 ± 0�01, vs. H = 0�95 for 	 < 	∗

and Ĥ = 1�27 ± 0�10, vs. H = 1�3 for 	 > 	∗. Despite the restricted scale
ranges retained for the regression to impose a good separation with the
threshold 	∗, small differences observed in each regime are consistent with
a reminiscent effect of the slope in the other regime.

In contrast to existing ones, the model developed in Section 3 shows
that the positive correlation (
 > 1) that naturally exists between flow
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FIGURE 5 Log-diagram of the long-trace simulation’s aggregate traffic bandwidth in time windows
of size � = 50ms. The Hurst parameter’s estimations are Ĥ = 0�98 ± 0�01 (in the scale range
[0�8, 12] s) and Ĥ = 1�27 ± 0�10 (in the scale range [800, 13,000] s).

rates and flow durations in Internet traces is able to increase long-term
correlations in aggregate traffic. This effect was not observed in the
previous section because of a too large threshold 	∗ as compared to the
short stationary trace. However, it is susceptible to become a common
feature of the future Internet traffic if, for instance, the variance V remains
unchanged while the mean flow rate keeps augmenting (hence threshold
	∗ diminishes).

4.2.2. Relation “H versus �ON”
In this last section, we complete the numerical validation of the

relation between the Hurst parameter(s) and the tail index of the
flow-duration distribution, when the conditional parameters 
 and �

vary. The classical relation (1.1a) have already been validated on
simulators[39], numerically[1] and on a real experimental platform[29]. Here,
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we concentrate on situations leading to the observation of a new long-
range dependence regime with a Hurst exponent that usual models fail
at predicting, but that our approach identified as H = 3−�′

2 = H0 + (
 − 1),
or H = 3−�′′

2 = H0 + �

2 , depending on the observed scale domain.
In the following experiments, �ON = 0�1 s and K = 105�2 are kept

constant with the same values as in the previous section. For different
values of the pairs (�ON, 
; � = 0) and (�ON, �; 
 = 1�4), we generate two
collections of 25-hours traces. The first set with (�ON, 
) varying serves
to validate the relation H = 3−�′

2 = H0 + (
 − 1), the conditional variance
term is disabled (� = 0) and the rate variance set to an arbitrary small value
V = 1. Conversely when the parameters’ pair (�ON, �) varies and 
 = 1�4
remains constant, V is fixed to a sufficiently large value to ensure that
the threshold 	∗ lies beyond the observational scale range involved in the
prediction expression H = 3−�′′

2 = H0 + �

2 . We then confront the resulting
Hurst exponents estimated in the adequate scale ranges to the theoretical
predictions of our model.

Experimental results displayed in Figure 6 are in good agreement with
the expected Hurst exponent values. The slight deviation observed around
the knee point of each theoretical curve (where the Hurst parameter hits
its critical value 1/2 and stabilzes) is fully consistent with the arguments
exposed in Refs.[1,29] where the classical relation (1.1) is experimentally
validated.

FIGURE 6 Validation of the relation “H versus �ON” in the two different domains: (a) For � = 0
and three different values of 
 in the domain where H = 3−�′

2 = H0 + (
 − 1) (for 
 < 1, the Hurst
parameter corresponds to the pseudo long-range dependence regime; whereas it corresponds to
the asymptotic long-range dependence for 
 > 1). (b) For 
 = 1�4 and two different values of �

in the domain where H = 3−�′′
2 = H0 + �

2 (the Hurst parameter corresponds here to the pseudo
long-range dependence regime). Solid lines represent the theoretical relations, while dashed lines
are drawn from empirical estimations. Confidence intervals displayed are provided by the wavelet
method of Ref.[2].
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5. CONCLUSION

In this work, we extended the widely used relation (1.1a) linking the
aggregate traffic’s Hurst parameter to the tail index of the flow-duration
distribution. We proposed a variant of the infinite source Poisson model
where flow rates and flow durations are correlated, leading to different tail
indices �SI and �ON for the distributions of the flow size and of the flow
duration. The model relies on two parameters 
 and � that fix the power-
law evolution of the first two conditional moments of the rate given the
duration. The 
 parameter also corresponds to the ratio between the two
tail indices �ON and �SI.

Then, we showed that there exists two possible regimes of long-range
dependence, each corresponding to a distinct heavy-tail phenomenon
of intensity depending on 
 and �, respectively. We characterized the
threshold between these two regimes, as a function of 
 and �, but also
of the rate’s mean and variance. Our analysis of a real web-traffic trace
revealed that the scaling domain usually observed over a reasonably large
stationary period lies beneath this limit, and therefore corresponds to
pseudo long-range dependence rather than to real (asymptotic) long-
range dependence. On that point, our study reached the same conclusions
as the ones in Refs.[1,41], but from a different modeling approach. We also
showed that, depending on the values of the parameters 
 and �, the
correlation between flow rates and flow durations can either accentuate or
weaken the long-range dependence strenght. Our results extend previously
proposed predictions like that of relation (1.1), with which it naturally
coincides if the correlation vanishes.

To the best of our knowledge, the model proposed in this work is
the first model that includes the correlation between flow rates and flow
durations. This correlation is very important. It has been observed for over
a decade[12,35] on Internet traces, and is likely to become an even more
important parameter in the future Internet with the emergence of flow-
aware approaches. Our results show how this correlation can modify the
long-range dependence classically induced by heavy-tailed flow durations.
Then, our model not only shows the impact of natural correlations (due,
e.g., to protocol’s effects) on the aggregate traffic; but also, it opens the
possibility to finely control (e.g., reduce) the long-range dependence by
leveraging flow-aware control procedures. One limitation of our model
though, is that it considers an open-loop protocol (without feedback
reaction); therefore it may fail at modeling traffic from highly congested
links. This certainly is an interesting direction to investigate, in particular
when the correlation parameters possibly depend on the load (as it could
be the case for instance with some scheduling policies).

From a mathematical viewpoint, our work introduces a new class of
models based on non-independently-marked point processes, from which
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various processes, such as the instantaneous throughput considered in
this paper, can be derived. The study of these processes, under various
rescalings and limit regimes and at both large and small scales, is certainly
an interesting direction to complement the present work, as they are likely
to reveal new properties.

APPENDIX A. PROOF OF PROPOSITION 3.1

The proof relies on the fact that if � < 2(
 − 1), the conditional variance
of the rate is asymptotically much smaller than its square mean so that the
rate becomes almost deterministically equal to KD
−1

i for long durations.
Let s > 0 and 
 > 0, and write:

�(Si > s) =
∫ ∞

dmin

�
(
Ri >

s
d

∣∣∣∣Di = d
)
�(Di ∈ dd)

=
∫ (

s
K (1+
)

) 1



dmin

�
(
Ri >

s
d

∣∣∣∣Di = d
)
�(Di ∈ dd)

+
∫ (

s
K (1−
)

) 1



(
s

K (1+
)

) 1



�
(
Ri >

s
d

∣∣∣∣Di = d
)
�(Di ∈ dd)

+
∫ ∞

(
s

K (1−
)

) 1


�

(
Ri >

s
d

∣∣∣∣Di = d
)
�(Di ∈ dd)�

We denote by A(s, 
), B(s, 
) and C(s, 
) the three terms of this sum.

To handle the first term A(s, 
), note that for d ≤
(

s
K (1+
)

) 1


, by

Chebychev’s inequality,

�
(
Ri >

s
d

∣∣∣∣Di = d
)

≤ �
(

|Ri − Kd
−1| > s
d

− Kd
−1 |Di = d
)
,

≤ Vd �(
s
d − Kd
−1

)2 �
Then, for some constants G independent of s and 
, we have:

A(s, 
) ≤
∫ (

s
K (1+
)

) 1



dmin

Vd �(
s
d − Kd
−1

)2 �ON/dmin(
d

dmin

)�ON+1 dd

= G
∫ s

1+


Kd
min

x
�+2−�ON


 −1

(s − x)2
dx �
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Using the series expansion:

1
(s − x)2

= 1
s2

∞∑
n=1

n
(x
s

)n−1
,

with uniform convergence for x ∈ [Kd

min,

s
1+


], we deduce:

A(s, 
) ≤ Gs
�+2−�ON


 −2
∞∑
n=1

n(
�+2−�ON



− 1 + n

)
(1 + 
)

�+2−�ON

 −1+n

− G
s

∞∑
n=1

n(Kd

min)

�+2−�ON

 −1

�+2−�ON



− 1 + n

(
Kd


min

s

)n

�

Since by hypothesis, � < 2(
 − 1), we can take 
 of the form 
 = 
(s) = s−�

with 0 < � < 2(
−1)−�



, which ensures that

A(s, 
) =
s→∞

o
(
s− �ON




)
� (A.1)

It is easy to see that we also have:

B(s, 
) =
s→∞

o
(
s− �ON




)
� (A.2)

For the last term C(s, 
), application of Chebychev’s inequality again
shows that:

C(s, 
) =
∫ ∞

(
s

K (1−
)

) 1


(1 − �(d))�(Di ∈ dd),

with

|�(d)| ≤ Vd �−2(
−1)


2K 2
�

Thus, recalling that we took 
 = s−� with 0 < � < 2(
−1)−�



, it is clear that

C(s, 
) =
s→∞

(
s

K (1 − 
)

)− �ON



+ o
(
s− �ON




)
, (A.2)

which completes the proof of Proposition 3.1.
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