
Received 20 February 2009
Revised 27 February 2009

Copyright © 2010 John Wiley & Sons, Ltd. Accepted 15 September 2009

Specifying and Provisioning Virtual Infrastructures with HIPerNET

Fabienne Anhalt,*† Guilherme Koslovski, Pascale Vicat-Blanc Primet

{fabienne.anhalt,guilherme.koslovski,pascale.primet}@ens-lyon.fr
INRIA, LIP, ENS Lyon

SUMMARY

With the expansion and convergence of communication and computing, dynamic provisioning of customized net-
working and processing infrastructures, as well as resource virtualization, are appealing concepts and technologies.
Therefore, new models and tools are needed to allow users to create, trust and enjoy such on-demand virtual infra-
structures within a wide area context. This paper presents the HIPerNET framework we are designing and develop-
ing for creating, managing and controlling virtual infrastructures in the context of high-speed Internet. The key idea
of this proposal is the combination of network- and system-virtualization associated with controlled resource reser-
vation to provide fully isolated environments. HIPerNET’s motivations and design principles are presented. Then
we examine specifi cally how this framework handles the virtual infrastructures, called Virtual Private eXecution
Infrastructures (VPXI). To help specifying customized isolated infrastructures, HIPerNET relies on VXDL, a language
for VPXI description and modeling which considers end-host resource as well as the virtual network topology inter-
connecting them, including virtual routers. After the specifi cation, allocation and scheduling phases, HIPerNET
helps in provisioning, deploying and confi guring virtual private execution infrastructures. This means, it triggers
the dynamic confi guration of all the equipments involved. In this paper we concentrate on network confi guration,
particularly to achieve network performance isolation. We also study and evaluate mechanisms to implement
and confi gure virtual-link control. Experimental results obtained within the Grid’5000 testbed are presented and
analyzed. Copyright 2010 John Wiley & Sons, Ltd.

key words: IaaS, network virtualization, resource virtualization, VXDL, VPXI, provisioning, virtual infrastructure,
isolation

1. INTRODUCTION

The expansion and convergence of computing and communication paint a new vision of the Internet:
it is not only a black box providing pipes between edge machines, but becomes a world-wide
reservoir increasingly embedding computational and storage resources to meet the requirement of
emerging applications[1]. Consequently, the promising vision of grid computing—to bring together
geographically distributed resources to build very large-scale computing environments for data- or com-
puting-intensive applications—along with the service wave led naturally to the ‘Infrastructure as a
Service’ paradigm[2].

High-end applications present new challenges—e.g., the amount of data to process, the distribution of
the data (wide-spreading of data sources over the territory), the heterogeneity of the data (lack of
well established standards), confi dentiality—which results in high communication, storage, and compu-
tation requirements. Intensive data-processing applications require an access to infrastructures with
high-performance data-movement facilities coordinated with computational resources. However, current

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt 2010; 20: 129–148
Published online 15 January 2010 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/nem.732

*Correspondence to: Fabienne Anhalt, INRIA, LIP—ENS Lyon, Lyon 69007, France
†E-mail: fabienne.anhalt@ens-lyon.fr

130 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

grid or cloud computing solutions[3,4] built over traditional TCP/IP technology do not provide the per-
formance isolation and predictability required by these users. Other applications need interconnections
of large-scale instruments with high-performance computing platforms. The proposed best effort
approaches often result in user dissatisfaction and/or resource under-utilization. Moreover, system and
middleware heterogeneity and complexity posed barriers to application portability. We expect future
Internet applications will be more and more demanding in terms of security, performance and quality
of service. New technologies such as machine, links or router virtualization are now envisionned as solu-
tions to these issues. Future applications may highly benefi t from these innovations.

In this paper, we argue that the extension of the Infrastructure as a Service paradigm to network
resources is promising and powerful. We show how it can be implemented through the Virtual Private
eXecution Infrastructure (VPXI) concept. Seen as a fundamental building block, VPXIs could mark a step
forward in transforming the Internet into a huge, shared computing and communication facility. Any
entity (individual user, community, government, corporate customer, high-level service provider) would
dynamically rent the IT resources combined with the networking resources it needs to solve its specifi c
problem. Based on this vision, this paper presents HIPerNET, a framework to create, manage and control
confi ned Virtual Private eXecution Infrastructures (VPXI) in a large-scale distributed environment.

In Section 2 we present the Virtual Private eXecution Infrastructure concept and the HIPerNET frame-
work, highlighting the originalities of its design. Section 3 discusses the specifi cation and allocation
process of VPXIs based on the VXDL, a language for virtual-infrastructure specifi cation and modeling
which considers end-host resources as well as virtual network topology, including virtual routers and
timeline. In Section 4 we highlight the confi guration step. The confi guration of a VPXI is based on the
instantiation of virtual entities as well as the confi guration of various embedded mechanisms. We focus
here on the control of network performance and on the isolation aspect. In Section 5 we give experimental
results obtained on the Grid’5000 testbed. Related works are in Section 6 while conclusion and perspec-
tives are developed in Section 7.

2. HIPERNET CONCEPTS

2.1 Combining OS and Network Virtualization

The virtualization concept[5,6,7] enables an effi cient separation between services or applications and
physical resources. The virtual-machines paradigm is becoming a key feature of servers, distributed
systems and grids as it provides a powerful abstraction. It has the potential to simplify resource manage-
ment and to offer a great fl exibility in resource usage. Each Virtual Machine (VM) a) provides a confi ned
environment where non-trusted applications can be run, b) allows establishing limits in hardware-
resource access and usage, through isolation techniques, c) allows adapting the runtime environment to
the application instead of porting the application to the runtime environment (this enhances application
portability), d) allows using dedicated or optimized OS mechanisms (scheduler, virtual memory manage-
ment, network protocol) for each application, e) enables applications and processes running within a VM
to be managed as a whole.

A virtual private network is classically provisioned over a public network infrastructure to provide
dedicated connectivity to a closed group of users. Resource-guaranteed VPNs[8] can be obtained from a
carrier but are generally static and require complex service level agreements (SLAs) and overheads. Tun-
neled VPNs [9] such as those in use over the Internet are more lightweight but offer low performance
and no assured quality of service. The functionality required for the automating dynamic provisioning
of lightpath or virtual private network capacities is emerging[10].

We propose here to combine and apply the concepts to both the IT resources and the network to enable
the creation of multiple, isolated and protected virtual aggregates on the same set of physical resources
by sharing them in time and space. These aggregations of virtual resources organized with virtual inter-
connections are called Virtual Private eXecution Infrastructures (VPXI). Moreovoer, virtualizing routers

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 131

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

and switching equipments opens an interesting door for the customization of packet routing, packet
scheduling and traffi c engineering for each virtual interconnection network. Router-function customiza-
tion as well as data-plane virtualization offers a high fl exibility for each infrastructure. Therefore, con-
ceptually, the virtual infrastructures are logically isolated by virtualization and enable the deployment
of independant and customized bandwidth provisioning, channel encryption, addressing strategies. The
isolation could also provide a high security level for each infrastructure. However, obtaining full perfor-
mance and security isolation remains a key technical issue and most of the proposed virtual infrastructure
frameworks do not address it properly. In the HIPerNET framework, we propose to combine low-level
machine virtualization with network virtualization and advance bandwidth reservation through service
overlays based on full router virtualization to obtain the isolation of network performance.

2.2 HIPerNET and Virtual Private Execution Infrastructures concept

2.2.1 Design principles of the HIPerNET framework
The HIPerNET framework combines system and networking virtualization technologies with crypto-
based-security, bandwidth sharing and advance reservation mechanisms to offer dynamic network-
ing and computing infrastructures as services. This framework is transparent to all types of upper
layers: upper layer protocols (e.g., TCP, UDP), APIs (e.g., sockets), middleware (e.g., Globus [3], Diet
[11]), applications, services and users. It helps end users with intensive-application deployment, execu-
tion and debugging, by providing an environment to run them on scalable, controlled, distributed and
high-capacity platforms. HIPerNET is also mostly agnostic of lower layers and can be deployed over IP
as well as lambda networks.

The HIPerNET framework is responsible for the creation, management and control of dynamic entities
called VPXIs, as defi ned in the next section, providing a generalized infrastructure service. It supervises
VPXIs during their whole lifetime. The key principle is to have operations realized automatically. For
this, HIPerNET defi nes and activates mechanisms to automatically control the VPXIs as well as the
status of the underlying exposed substrate called HIPerSpace. HIPerNET integrates classical FACPS
(fault-tolerance, accounting, confi guration, performance and security) management functions to these
dematerialized entities. In the context of this paper, we focus on two critical aspects of the virtualisation
context: network confi guration and performance isolation. Neither the security mechanisms—which are
other key points of this framework [12]—relying on SPKI and the HIP protocol, nor the advance reserva-
tion algorithms or the migration mechanisms for fault-tolerance, are described in this paper.

Figure 1 illustrates two virtual execution infrastructures (VPXI A and VPXI B) allocated on a global
exposed infrastructure (HIPerSpace) using the HIPerNET framework1. At the lower level, the HIPerNET
framework accesses and controls a part of the physical infrastructure which is virtualized and called
the HIPerSpace. Enrolled physical resources are then registered to the HIPerNET registrar and can be
allocated to VPXIs. Once the resources have been exposed, HIPerNET gets full control over it. This set
of exposed virtualized resources composes the substrate hosting the VPXIs. At run-time, the HIPerNET
manager communicates with the nodes of the HIPerSpace to deploy virtual nodes, monitor their status
and confi gure control tools to supervise the resource usage.

In this fully-virtualized scenario, HIPerNET interacts with multiple resource providers to plan, monitor
and control them. Functions such as fault management, load balancing, bandwidth management and
performance control are handled taking both network- and resource-virtualization techniques into
account.

The current HIPerNET software implements virtual links at layer 3 of the OSI model (using IPsec and
the HIP protocol [14]) enabling multiple virtual overlay networks to cohabit on a shared communication
infrastructure. An overlay network has an ideal vantage point to monitor and control the underlying
physical network and the applications running on the VMs. All network overlays and virtual end hosts

1The HIPerNET software is under development within the ANR HIPCAL project [13]

132 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

are kept isolated both at the network and OS level to ensure security, performance control and adapt-
ability. We also study the implementation of these virtual links at lower level (layer 2 or layer 1) within
the CARRIOCAS project[10], [15].

2.2.2 Virtual Private Execution Infrastructure concept
We defi ne the Virtual Private eXecution Infrastructure (VPXI) concept as the HIPerNET’s management
unit. VPXIs are an organized aggregation of virtual computing resources interconnected by a virtual
private overlay network for a defi ned time period. Ideally, any user of a VPXI has the illusion that he is
using his own dedicated system, while he really is using multiple systems, part of the global distributed
infrastructure. The resulting virtual instances are kept isolated from each others and the members of a
VPXI have a consistent view of a single private TCP/IP overlay, independently from the underlying
physical topology. A VPXI can span multiple networks belonging to disparate administrative domains.
In virtual infrastructures, a user can join from any location and use the same applications he was using
on the Internet or its intranet.

Each VPXI is specifi ed according to the user requirements. The specifi cation is interpreted, allocated
and confi gured using basic entities, which are building blocks composing the virtual execution infra-
structures, as VXNodes: virtual end hosts, VXRouters: virtual routers, and VXLinks: virtual links.

VXNodes: Virtual end hosts. VXNodes or virtual end hosts are personalized virtual machines that are
allocated in physical hosts, and managed by HIPerNET to make sure they share the physical resources
among them in a confi ned, secured and isolated way. Developed in accordance with the specifi cations
of users and applications, each virtual end host can be parameterized (e.g., CPU, RAM memory, storage)
and confi gured (e.g., operating system, communication tools) respecting the key set of parameters
informed during their specifi cation. Otherwise, end hosts can be organized individually or in groups,
recursively. Basically, a VPXI represents a complex infrastructure, composed by individual end hosts
that interact with groups (clusters or grids). Groups allow HIPerNET to manage a set of virtual end hosts
with the same characteristics all together, thus avoid unnecessary complex topologies and confi guration
scenarios.

VXRouters: Virtual routers. Within the VPXI design, virtual routers, which we call VXRouters, are fully-
personalizable components of the VPXIs. For example, these VXRouters, instantiated within physical
Linux routers, will run inside isolated virtual machine instances. In our approach, all traditional network
planes (data, control and management) are virtualized. Therefore, users can use any protocol and control

Figure 1. Example of a VPXI allocation on a distributed and virtualized HIPerSpace

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 133

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

mechanism on their allocated virtual router, and within the virtual interconnection network. HIPerNET
implements a default routing mechanism on the virtual routers, but users can reconfi gure it. They
can deploy customized routing protocols, and confi gure the packet-queuing disciplines, packet
fi ltering and monitoring mechanisms they want. HIPerNET only manages the physical substrate and
the resources attribution to each VXRouter. Also, VXRouters represent strategic points of the network
for rate control as they concentrate aggregated VPXI traffi c. By limiting the rate and policing the traffi c
of the different VXRouters, the traffi c of VPXIs can be controlled and the user is provided with a fully
isolated execution infrastructure. The control is implemented in the substrate, hence its implementation
and management is transparent to the user. The advantage of having controlled environments is twofold:
users have strong guarantees, while the network provider can better exploit the network by sharing it
effi ciently but differently between users.

VXLinks: Virtual links. Virtual execution infrastructures can be composed by several VXNodes, groups
of them, and VXRouters. All these components are interconnected using VXLinks or virtual
links. Each VXLink is a temporary path allocated among multiple physical channels. As in a real infra-
structure, each link can be parameterized with different metrics according to the applications’ require-
ments. Metrics such as bandwidth, latency and direction can be valuated for each virtual link. Using the
source-destination defi nition, it is possible to organize the model of the virtual infrastructure, defi ning
and asking for specifi c confi gurations in critical paths, that can interfere with the execution of
applications.

HIPerNET comprises a module to specify virtual infrastructures. This module relies on the VXDL [16]
language and provides users with a large fl exibility in VPXI design as illustrated in the next section.

3. VXDL: SPECIFYING AND MODELING VIRTUAL PRIVATE
EXECUTION INFRASTRUCTURES

3.1 Needs for a specifi c language

Users need to defi ne the virtual private execution infrastructures they request according to the applica-
tions’ requirements. This process requires a specifi c language to describe virtual resources and networks.
Existing languages are used in different areas of networks or IT resources management. The Common
Information Model Specifi cation (CIM) [17] provides a common set of objects and relationship among
them. The CIM architecture is based on the UML concept and provides language CQL (CIM Query Lan-
guage) to select sets of properties from CIM-object instances. CQL is a subset of SQL-92 with some exten-
sions specifi c to CIM. In this case, CQL allows queries asking for a set of resources with certain
confi gurations, but does not have parameters to interact with the allocation system, for example inform-
ing the basic location of a component. An other common example is the Network Description Language
(NDL) [18]. NDL is a collection of schemas (topology, layer, capability, domain and physical) used to
represent a network infrastructure at different levels. This language is guided by the Resource Descrip-
tion Framework (RDF) [19], a general-purpose language for representing information on the Web.
Basically, RDF (and NDL) explores a graph data model composed by a set of RDF triples (a subject, an
object and a predicate (property)). The triple concept is diffi cult to adapt to recursive description, like
groups or aggregates found in virtual infrastructures. A descriptive language dedicated to virtual infra-
structures description must be more adaptive than conventional solutions and needs to combine the
space and temporal aspects of virtual infrastructures. During the specifi cation process, new challenges
coming from virtualization techniques have to complement the management, confi guration and
execution features of classical languages. We identify some desirable aspects that must be explored for
descriptive languages: a) recursive representation of individual resources and groups; b) each resource
must be characterized using an extensible list of descriptive parameters to represent the necessary

134 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

confi guration—e.g., RAM memory, CPU speed, storage capability; c) considering the confi guration
and deployment is also necessary to describe the software (e.g., operating systems) and tools (e.g., com-
munication and programming tools) that must be used in VPXI; d) each component (individually or in
group) should be characterized as its elementary function, for example to describe a set of computing
nodes or storage nodes; e) it must be possible to express the composition of virtual network topology,
detailing each virtual link. On the other hand, parameters should enable an abstract description, for
example, informing a virtual link description that must be used to interconnect a group of resources; f)
the executing timeline of the infrastructure (this parameter should help in resources reservation and
co-scheduling); g) security attributes for each resource element (access control, confi dentiality level);
h) commercial attributes for each resource element (maximum cost); and i) temporal attributes for each
resource element (time window for provisioning).

Within a given time slot, a VPXI can be formally represented as a graph—G(V, E)—where V is a set
of vertices and E represents a set of edges. A vertex is in charge of active data processing functions and
an edge is in charge of moving data between vertices. Figure 2 illustrates this concept, representing a
virtual infrastructure composed by the aggregation of virtual machines interconnected via virtual chan-
nels. It shows two VXRouters (vertices rvA and rvB) which are used to interconnect and perform the
network control functions among the other virtual resources (vertices rv 1 to 8). These virtual routers
can independently forward the traffi c of the different virtual infrastructures sharing the same physical
network. Each edge represents a virtual link used to interconnect a pair of virtual resources, which con-
tains different confi gurations, as lv 1 and lv 2. Note that at the next time slot, the confi guration may be
different.

To specify a virtual execution infrastructure we introduce VXDL (Virtual Resources and Interconnec-
tion Networks Description Language), a language that besides allowing end-resource description lets
users describe the desired virtual network topology (using the same grammar), including virtual routers
and timeline representation. Implemented with the XML standard, VXDL helps users and applications
to create or change VPXI specifi cations. The VXDL grammar is divided into Virtual Resources description,
Virtual Network Topology description and Virtual Timeline description [16]. A new key aspect of this language
is that all these basic descriptions are optional: it is possible to specify a simple communication infra-
structure, or a simple end-resource aggregate.

3.2 Virtual resources description

The key point explored in this part of the VXDL grammar is enabling users and applications to describe
in a simple and objective way all the necessary end hosts, and groups of them. The parameters proposed

Figure 2. Example of a VPXI composition using graph notation

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 135

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

in VXDL are directly related to virtual infrastructures, and besides allowing basic resource parameteriza-
tion (e.g., maximum and minimum values acceptable to RAM memory and CPU frequency), VXDL lets
users directly interact with management frameworks (such as HIPerNET). For this reason, VXDL sug-
gests the defi nition of parameters such as anchor, number of virtual machines allocated per physical host,
and key components.

The anchor parameters act in the physical allocation of a VPXI. We know that in a virtualized substrate
the VPXI can be allocated anywhere, but sometimes it is necessary that a virtual end host (or group) must
be positioned in a physical location (e.g., a site or a machine—URL, IP) in accordance with a basic loca-
tion. Yet, analyzing a virtualized substrate, multiple virtual machines can be allocated in the same physi-
cal host, sharing the real resources among them. VXDL enables the defi nition of a maximum number of
virtual machines that must be allocated in a physical host, enabling users to interact directly with the
allocation algorithm2. The key parameter acts in the identifi cation of the most important components of
the VPXI. This information will help in the allocation, informing that the component must be allocated
in advance.

3.3 Virtual network topology description

VXDL improves the network topology description in two key points: I) enabling the specifi cation together
with other components, using the same grammar; II) applying the concept of link organization, which
permits a simple and abstract description. Links can defi ne connections between end hosts, between end
hosts and groups, inside groups, between groups and VXRouters, and between VXRouters. Using this
concept users can model their VPXIs in accordance with their applications. Figure 3 presents a possible
VPXI composed by two groups (clusters), each with 8 nodes interconnected using 2 VXRouters.

In VXDL grammar, the defi nition of source-destination pairs for each link is proposed. A single link
can be applied to different pairs, simplifying the specifi cation of complex infrastructures. For example,
links used to interconnect a homogeneous group, such as a cluster, can all be defi ned in a same link
description. Each link can receive a parameterization involving latency, bandwidth and direction. To
latency and bandwidth, the maximum and minimum values are applied.

3.4 Virtual timeline description

Any VPXI can be permanent, semi-permanent or temporary. The VPXIs are allocated for defi ned lifetime
in time slots. Time slots are confi gurable parameters and are specifi c to the HIPerSpace. Often the VPXI
components are not used simultaneously or all along the VPXI’s lifetime. Thus, the specifi cation of an
internal timeline for each VPXI can help the middleware in the allocation, scheduling and provisioning
processes. Periods can be defi ned in function of their usages, as data transfer or computation, delimited
by temporal marks. A period can start after the end of another period or after an event.

2More information about VXDL is provided on http://www.ens-lyon.fr/LIP/RESO/Software/vxdl

Figure 3. A graph representing a network topology

136 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

Looking at fi gure 4 we can observe three execution stages of an application. This VPXI is composed
by one data storage cluster, three computation clusters and one visualization cluster, all interconnected
through virtual links. In stage I, it is necessary to perform a data transfer between the storage cluster
and the computation clusters. During this transfer, a high-bandwidth confi guration is required, which
is not necessary in the others stages. As early as in stage II, the three computation clusters execute
an application, possibly requesting links with a low latency in communication to the substrate frame-
work. Finally, stage III asks for a high bandwidth again to perform the data transfer and results visual-
ization. In this example, the periods between stages I and II or stages II and III can be defi ned in a relative
way: after the data transfer, in stage II, computation starts and the low latency on the intra-cluster
links is implemented. VXDL explores the relative defi nitions using common parameters as start, after
and until.

4. DEPLOYMENT AND PROVISIONING VPXIs

In a typical scenario, HIPerNET receives a user’s VPXI request, specifi ed in VXDL. The software interprets
it, then checks its feasibility and potentially negotiates security, performance, planning and price with
the customer or its representative. When an agreement has been found, a VPXI instance is allocated and
scheduled as proposed in [20]. The VPXI is then provisionned according to the schedule. Finally, the
deployment of a VPXI consists in instantiating and confi guring the specifi ed virtual entities (VXNodes,
VXRouters and VXLinks) on top of the physical substrate. First, all the virtual nodes (end hosts and
routers) are deployed, then the virtual links and routes are set up. Routes are confi gured individually in
all the VXNodes and VXRouters. During the VPXI’s lifetime, its allocation may change as described in
section 3.4. In this case, if the topology changes, new VXLinks are deployed if necessary and the routes
are reconfi gured in all the VXNodes and VXRouters to reconnect the topology. Below, we describe the
mechanisms that are deployed to virtualize the network resources.

4.1 VPXI network resource provisioning

Virtual infrastructures share a physical substrate network. To ensure VPXI isolation, the resource sharing
between different virtual infrastructures needs to be fi nely controlled. To achieve this, a set of control
mechanisms residing inside the physical substrate nodes are set up. They are in charge of supervising,
at runtime, how the physical capacity is allocated to the virtual nodes and links. After the VPXI allocation

Figure 4. Example of a virtual timeline defi nition

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 137

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

and scheduling process, virtual capacities are assigned to each virtual node and link. Then, these
capacities are reserved and provisionned in the physical substrate. During the deployment phase, the
control tools are invoked at each involved substrate node, in order to enforce allocations during the VPXI
lifetime. At runtime, the control tool’s actions can be reconfi gured when the VPXI’s requirements
change. This happens for example when the execution moves from one stage to the next. At that moment,
HIPerNET updates the confi guration of the deployment according to the allocation corresponding to
the new stage. Thus, it reconfi gures the control tools, in order to change the resource attribution. The
control tools have three main features: they manage the bandwidth, CPU and memory sharing among
the virtual domains, so that they offer the user provisionned VPXIs according to his requirements. During
the negotiation, a VPXI user can specify a desired bandwidth per virtual link, associated to one of the
following services:

• Guaranteed minimum: the minimum rate that has to be available on the virtual link at any moment;
• Allowed maximum: the maximum capacity the virtual link must allow at any moment;
• Static reservation: in this case, the guaranteed minimum is equal to the allowed maximum.

The user can use one of these services to specify its application’s requirements. A user who wants to
execute, for example, a distributed application communicating with MPI will specify a guaranteed
minimum rate which can not be decreased during negotiation. If the user specifi es an allowed maximum,
the negotiation will result in a bandwidth equal or below this maximum. This link is shared in a
best-effort way with other traffi c. Specifying a static rate gives the user the impression that he works
in a dedicated physical network whose links have the specifi ed capacity. He will be able to obtain the
specifi ed bandwidth at any moment but can never exceed it. This kind of service allows no negotiation
and could for example help with conducting reproducible experiments where link availability should
not vary.

According to these user specifi cations and the free capacity on the physical substrate, a static band-
width reservation is made. Then, HIPerNET’s control mechanism allocates the maximum bandwidth for
each virtual link in order to guarantee the negociated bandwidth. The confi guration takes place on both
ends of the virtual link confi guring the physical interfaces.

Let’s consider two users of two VPXIs who specifi ed different rates for the different virtual links. The
user of VPXI 1 desires a bandwidth of 100 Mb/s on virtual link A (VL A) and a bandwidth of 200 Mb/s
on VL B connected to VXRouter (VXR) 1. The user of VPXI 2 wants both virtual links connected to
VXRouter 2, VL C and VL D, to allow 400 Mb/s. Figure 5 shows the specifi ed virtual network confi gura-
tions of VPXI 1 and VPXI 2. HIPerNET confi gures the virtual link rates to these values during the deploy-
ment of VPXI 1 and VPXI 2.

Users can also specify a maximum percentage of the physical CPU a virtual node of a VPXI should be
allowed to use. This quantity of CPU is allocated in the available CPU of the physical machine. The

Figure 5. User bandwidth specifi cation for two VPXIs

138 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

available quantity of CPU corresponds to the CPU of the physical machine minus the part of the CPU
in use for the machine’s host system, or domain 0 (dom0) in the Xen terminology:

CPUavailabel = CPUmachine − CPUdom0

Dom0 consumes a small part of CPU time for the control mechanisms and a considerable part for net-
working as it is in charge of forwarding the packets of all the virtual machines, or domains U
(domUs):

CPUdom0 = CPUcontrol + CPUnetworking

and

CPUcontrol << CPUnetworking

So CPUdom0 can be established according to the sum of the maximum rates specifi ed by all the domUs
hosted on the considered physical machine. In Section 5.2, this relationship is evaluated on virtual
routers.

The next section gives more details on the VXRouters.

4.2 Implementation of VXRouters

In the current HIPerNET implementation, the VXRouters consist in software routers implemented inside
virtual machines. These VXRouters are hosted by network-aware servers, commodity servers with the
required hardware to support high-performance networking (several network interface cards, several
CPUs and a huge amount of memory) used as Linux routers. Current commercial virtual or logical
routers do not support the full virtualization of the router data planes. The performance impact of the
data-plane virtualization is indeed an issue. However, recent analysis have demonstrated that modern
virtualization techniques are improving rapidly, making our VXRouter approach interesting and promis-
ing [21]. Figure 6 shows an example of a physical router hosting two VXRouters. These virtual routers
have to share the physical resources of the machine and additional processing is necessary.

Customized routing and traffi c-engineering functions can be set up on the VXRouters. A VPXI user
can, for example, choose to adapt the routing in order to satisfy specifi c Quality of Service requirements,
as illustrated in Figure 7.

Figure 6. Model of a physical router hosting VXRouters

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 139

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

In this example, latency-sensitive traffi c and bandwidth-aware traffi c are routed on different paths.
1 Gb/s links are allocated between each one of the three VXRouters to transmit latency sensitive traffi c.
All high-throughput traffi c, which can be pipelined, is redirected over Site 2. The advantage of this
routing scheme is that the user needs to provision only 2 links with 5 Gb/s instead of 3. As presented in
[22], this is an example of effi cient channel provisioning combining routing and traffi c engineering.

5. EXPERIMENTS

This section presents experimental results of the current implementation of network virtualisation in
HIPerNET. Rate control for bandwidth provisioning, performance isolation and the CPU cost of band-
width are investigated. To instantiate virtual end hosts and virtual routers, we chose to use the Xen [6]
technology because of the offered fl exibility: distinct operating systems with distinct kernels can run in
each virtual machine and the user is provided with full confi gurability to implement individual virtual
networks. All the experiments are executed within the Grid’5000 [23] platform, using Xen 3.2 and IBM
Opteron servers with one 1 Gb/s physical interface. The machines have two CPUs (one core each).

5.1 Rate control and performance isolation experiment

The goal of this experiment is to evaluate the isolation between VXRouters when they are mapped on
the same physical router.

5.1.1 Experimental setup
Two VXRouters called VXR1 and VXR2 share one physical machine to forward the traffi c of two VPXIs
(VPXI 1 and VPXI 2). Each virtual router has two virtual interfaces connected to two virtual links as
represented on Figure 8. These links are confi gured to allow a maximum bandwidth R of respectively
RVLA = RVLB = 150 M b/s and RVLC = RVLD = 300 Mb/s. Figure 8 represents this setup.

Three cases of user traffi c can be distinguished by

1. in-profi le traffi c: the sum of the traffi c on virtual link X is smaller than the allowed maximum rate
RVL X;

2. limit traffi c: the sum of the traffi c on virtual link X is equal to the allowed maximum rate;
3. out-of-profi le traffi c: the sum of the traffi c on virtual link X exceeds the allowed maximum rate.

This experiment aims at determining if the traffi c-control techniques limit the traffi c to the desired rate
and if isolation is guaranteed. Isolation means that limit or out-of-profi le traffi c should have no impact

Figure 7. Example of bandwidth allocation for latency-sensitive and high-bandwidth fl ows

140 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

on the available bandwidth on the physical link, and thus none on the available bandwidth of concurrent
virtual links.

Table 1 lists four testcases to validate our implementation. In this experiment, we suppose a congestion
factor (CF) of 0.8 for in-profi le traffi c, which means that traffi c is sent at 80% of the maximum allowed
speed. Limit traffi c has a CF of 1 and for out-of-profi le traffi c, a CF of 1.2 is chosen.

One fl ow is sent from virtual end hosts Ai and Ci to the corresponding virtual end hosts Bi and Di,
respectively. The fl ows are sent in the different cases so that their sum on each VXRouter corresponds
to the profi le specifi ed in Table 1.

5.1.2 Results
The results of these experiments show that the desired rate on each virtual link can be obtained with our
confi guration and that out-of-profi le traffi c does not impact other traffi c sharing the same physical
link.

In case 1, where all the traffi c is in profi le, requiring less bandwidth than allowed, each fl ow gets its
desired bandwidth and no packet loss is detected with UDP. For case 2, the fl ows try to get 100% of the
maximum available bandwidth. This causes some sporadic packet losses which cause some instantaneous
throughput decreases in TCP as illustrated in Figure 9. The overall throughput still reaches the allowed
maximum value.

Figures 10 and 11 show respectively the results with TCP and UDP fl ows in testcase 4 where the two
fl ows of VPXI 1 are in profi le, their sum 30 + 90 = 120 Mb/s does not exceed the maximum allowed value
of 150 Mb/s. With TCP and UDP, both fl ows attempt their desired rate and with UDP, no loss is detected.
The two fl ows of VPXI 2 try to exceed the allowed value of 300 Mb/s by sending at 120 + 240 = 360 M b/s.
As a result, they see some of their packets dropped at the incoming interface of the physical router. TCP
reacts in a sensitive way to this packet drop. It tries to share the available bandwidth by the two fl ows.
So fl ow 1 gets generally the 120 M b/s as it is less than half of the available 300 Mb/s. Flow 2 requiring
240 Mb/s varies a lot to get also an average throughput of about half of the 300 Mb/s.

With UDP (Figure 11), the packet drop of the fl ows of VPXI 2 causes a regular decrease of the band-
width. Flow 1 looses an average 13% of its packets and fl ow 2 an average of 18% of its packets. The

Figure 8. Experimental setup with 2 VPXIs with different bandwidth requirements

VPXI 1 VPXI 2

Case 1 In profi le In profi le
Case 2 Limit Limit
Case 3 In profi le Limit
Case 4 In profi le Out of profi le

Table 1. User traffi c for different test cases

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 141

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

average of these two values is slightly smaller than the percentage of exceeding packets (1 − (1/1.2) =
16.6%) implied by the congestion factor of 1.2.

These results show that only fl ows which try to exceed the fi xed limit bandwidth are penalized in this
confi guration. In-profi le and even limit fl ows are not impacted. In this way, individual rate sharing is
effi cient in this model and isolation is guaranteed.

5.2 CPU cost of bandwidth

To fi nd out how much CPU is needed to forward fl ows in domain U, making use of data-plane virtual-
ization, and how this value depends on the forwarding rate, this experiment measures the CPU usage
of Xen during forwarding on VXRouters with different rates. This experiment is executed with 1, 2 and
4 concurrent VXRouters on a single physical router, each one forwarding a single UDP fl ow with differ-
ent rates. The rate of each fl ow is incremented every 60 seconds so that the aggregate rate on the set of
virtual routers increments by 10 Mb/s. During each interval, the CPU use of the physical router is mea-
sured with Xen’s xentop tool. Figure 12 shows the CPU utilization of dom0 of the physical router in the
different cases. It increases with the increasing aggregate forwarding rate in the VXRouters. Surprisingly,
this overhead does not signifi cantly vary with different numbers of VXRouters. It is even almost identical
when 2, 4 or 8 VXRouters are forwarding simultaneously fl ows. The corresponding CPU utilization
of a domU during the same experiments is represented on Figure 13. The overhead increases with the

Figure 9. Test case 2: TCP Rate with VPXI 1 and 2 being at the limit rate (with congestion
factor(CF) of 1)

142 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

forwarding rate, but in the case of dom0, it does not increase with the number of concurrent VXRouters.
Only the cost of a single VXRouter represents an exception. This means that the CPU cost of a physical
router hosting VXRouters depends strictly on the aggregate forwarding rate and not on the number of
VXRouters it hosts.

6. RELATED WORK

Infrastructure virtualization is a hot topic studied in several projects [24,25,26]. In [24], the authors
propose VINI, a virtual network infrastructure that allows several virtual networks to share a single
physical infrastructure, similarly to HIPerNET. Researchers can run experiments in virtual network slices
with XORP routing software, running inside UML instances. They can confi gure it and choose a protocol
among the available ones. HIPerNET pushes this facility a step further adding data-plane virtualization
and allowing users to chose the operating system and install any routing software. This also provides
full isolation between virtual nodes and controlled resource sharing. VINI has dedicated IP address
blocks, HIPerNET interposes a HIP-layer between the network and the application levels, that provides
each resource with a unique identifi er (HIT).

Trellis [27] is a network-hosting platform deployed on the VINI facility. Like HIPerNET, it is a
virtual-network substrate that can run on commodity hardware. It is implemented using VServer’s [28]

Figure 10. Test case 4: TCP Rate with VPXI 1 being in profi le and VPXI 2 out of profi le (with a
congestion factor(CF) of 1.2)

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 143

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

container-based virtualization because of its networking performance. For the reasons described before,
we use the Xen hypervisor which has become promising in terms of its growing network performance
in its recent versions.

VINI and Trellis are evaluated on PlanetLab [29] which provides users with slices of virtual
resources distributed among its overlay infrastructure. Those virtual resources are VServers providing
generally end-host functionalities. In HIPerNET, we chose to integrate the resource ‘virtual router’ too,
allowing users to custom the routing. HIPerNET is evaluated in a confi ned large-scale experimental
facility.

In the GENI design [25] the users are provided with slices like in VINI, but these slices are composed
of resources which can be either virtual machines or just partitions of physical resources. GENI’s goal is
to provide users with multiple shareable types of resources. The HIPerNET approach is compatible with
GENI. Our goal in HIPCAL is to prove the concept by implementing it in a real testbed. The presented
early results are promising. The idea to decouple services from the infrastructure with virtualization is
also described in CABO [26]. CABO’s argument is to give Internet service providers end-to-end control
while using the physical equipments of different physical-infrastructure providers. HIPerNET combines
network virtualization with end-host virtualization to provide users with virtual computing infrastruc-
tures, interconnected by an end-to-end controlable virtual network.

The main difference between these projects and HIPerNET is that HIPerNET provides users with full
confi gurability. HIPerNET gives users root access to the virtual nodes. This means that users can deploy

Figure 11. Test case 4: UDP Rate with VPXI 1 being in profi le and VPXI 2 out of profi le (with a
congestion factor(CF) of 1.2)

144 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

any operating system they choose on the node, and so have full confi guration ability. It is then always
possible to restrict confi gurability features for unexperimented users.

Resource sharing in terms of bandwidth in virtual networks has been treated by DaVinci [30], a design
and mathematical model of dynamic adaptation of virtual networks to their performance objectives.
While DaVinci’s design enables optimal physical-link utilization through monitoring, HIPerNET’s imple-
mentation focuses on giving strong performance guarantees and isolation to users, avoiding interferences
if a virtual-network user tries to exceed his allocated rate.

Previous research on virtual routers has concluded that they have lower performance with Xen’s data-
plane virtualization than with control-plane virtualization only [31]. But as HIPerNET focuses on full
confi gurability including OS choice, Xen’s data-plane virtualization meets its requirements. In particular,
Xen’s data-plane virtualization performance has already been growing with the successive versions, now
achieving Linux-like throughput, at least for big packets [21]. Moreover, major promising network
improvements are expected in the next version [32].

Current hardware solutions like Juniper’s TX Matrix Plus routers allow running up to 16 routing
instances. By virtualizing the control-plane, they intend to offer a gain in routing capacity and reduce
power consumption, a goal they share with server consolidation. Even though these routers do have very
good performance, they are not as easily deployable at a very large scale and for experimentation purpose
as VXRouters. They do not allow the same confi guration facility. An interesting approach using virtual
routers is the ability to migrate them over the substrate, to meet the resource requirements at any moment
and optimize the overall resource utilization. This concept is described in [33]. In combination with the

Figure 12. Dom0 CPU use with 1, 2, 4 or 8 concurrent VXRouters forwarding UDP fl ows

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 145

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

HIPerNET framework, this type of dynamic allocation would allow optimal resource utilization in accor-
dance with the user-defi ned specifi cation and is also interesting for fault tolerancy. In addition to the
migration, resource utilization on the links between the virtual routers can also be optimized by allocat-
ing a virtual path to multiple physical links as suggested in [34]. This allows allocating virtual links,
which require more capacity than is free on a single physical link. These extensions will be studied for
integration in HIPerNET.

Existing commercial products, including Amazon’s Elastic Compute Clouds (EC2)3, Enomaly’s Elastic
Computing Platform (ECP)4 or GOGRID5, like HIPerNET, allow users to reserve a set of resources, choose
an OS and customize it. Others are less confi gurable, like 3tera’s AppLogic6, which has no OS choice and
b-hive7, which is data-center oriented. All these clouds middleware are suitable to perform computation
or storage and are not intended to host virtual routers, as no special physical routing machines exist to
carry the virtual routers, these would be hosted on an end host like in overlay networks. Moreover these
Cloud Computing solutions do not intend to control the network or the communication performance as
HIPerNET does.

3http://aws.amazon.com/ec2
4http://www.enomaly.com
5http://www.gogrid.com
6http://www.3tera.com
7http://www.bhive.net

Figure 13. DomU CPU use with 1, 2, 4 or 8 concurrent VXRouters forwarding UDP fl ows

146 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

7. CONCLUSION

The convergence of communication and computing on the Internet encourages a Networking and
Computing Infrastructure as a Service (IaaS) approach. In this context, this paper put in perspective
the concept of Virtual Private eXecution Infrastructure (VPXI), the VXDL langage and the HIPerNET
software which is developed within the ANR HIPCAL project to create and supervise VPXIs multiplexed
in time and space. HIPerNET allows users to submit VPXIs requests, and allows infrastructure owners
to virtualize a physical substrate network to share it effi ciently and dynamically. We overviewed the
VXDL language—which conforms to the XML standard—that we have defi ned to enable users to dimen-
sion VPXIs precisely and to specify their attributes. Once specifi ed, a VPXI request is submitted to the
HIPerNET engine which processes it and allocates resources accordingly. HIPerNET is responsible for
admission control, resource discovery and allocation, and VPXI management in terms of fault, account-
ing, performance, confi guration and security. This paper concentrated on the network-resource confi gu-
ration feature of the HIPerNET framework. HIPerNET integrates virtualized software routers, VXRouters,
to give users the ability to fully customize networking and routing functions. A validation of the link-
control services for managing and sharing bandwidth between the virtual networks has been presented,
as well as an evaluation of the data-lane virtualization in terms of CPU overhead. The results showed
that, thanks to the HIPerNET mecanisms, in profi le and limit fl ows are not impacted by non-conforming
traffi c. In this way, we demonstrated that in our implementation of the HIPerNET model, individual rate
control is effi cient and isolation is guaranteed. We also showed that the CPU cost of a physical software
router hosting VXRouters depends strictly on the aggregate forwarding rate and not on the number of
VXRouters it hosts. We are currently deploying the HIPerNET framework integrating the virtual routers
and virtual links control in Grid’5000’s 10 Gb/s context for isolating VPXIs dedicated to distributed
applications experiments. We are also investigating security, resiliency and performance aspects with
real user applications.

ACKNOWLEDGEMENTS

This work has been funded by INRIA and the French ministry of Education and Research via the HIPCAL
ANR grant and by the CARRIOCAS pôle System@tic grant. Experiments presented in this paper were
carried out using the Grid’5000 experimental testbed, an initiative from the French Ministry of Research
through the ACI GRID incentive action, INRIA, CNRS, RENATER and other contributing partners (see
https://www.grid5000.fr). The authors would like to thank Augustin Ragon for his contribution as well
as Olivier Mornard and Jean-Patrick Gelas for their help in the development and validation of the HIP-
erNet software. The authors would like to thank the anonymous reviewers for their fruitful comments
and suggestions.

REFERENCES

 1. RESERVOIR Seed Team. RESERVOIR: An ICT Infrastructure for Reliable and Effective Delivery of Services as
Utilities, Technical Report H-0262, IBM Research Division, February 2008.

 2. Evaluation of current network control and management plane for multi-domain network infrastructure, FED-
ERICA Deliverable DJRA1.1, July 2008.

 3. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer
Applications, 1997; 11: 115–128.

 4. EGEE: Enabling Grids for E-sciencE. http://www.eu-egee.org [3 October 2009].
 5. Popek GJ, Goldberg RP. Formal requirements for virtualizable third generation architectures. In SOSP 73:

Proceedings of the fourth ACM Symposium on Operating Systems Principles, New York, 1973; p. 121.

 VIRTUAL INFRASTRUCTURES WITH HIPerNET 147

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

 6. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfi eld A. Xen and the art of
virtualization. In SOSP 03: Proceedings of the 19th ACM Symposium on Operating Systems Principles, New York,
2003; 164–177.

 7. Sugermann J, Venkitachalam G, Lim B-H. Virtualizing I/O devices on VMware workstation’s hosted virtual
machine monitor. In Proc. 2001 Usenix Annual Technical Conference, pp. 1–14, Usenix Assoc., 2001.

 8. Duffi eld NG, Goyal P, Greenberg A, Mishra P, Ramakrishnan KK, van der Merive JE. A fl exible model
for resource management in virtual private networks. SIGCOMM Computer Communication Review 1999; 29(4):
95–108.

 9. Finlayson M, Harrison J, Sugarman R. VPN Technologies: A Comparison. Data Connection: London, February
2003.

10. Vicat-Blanc Primet P, Soudan S, Verchère D. Virtualizing and scheduling optical network resource for emerging
IT services. Journal of Optical Communications and Networking 2009; 1: A121–A132.

11. Caron E, Desprez F. DIET: A Scalable Toolbox to Build Network Enabled Servers on the Grid. In Int. Journal of
High Performance Computing Applications, 2006; 20(3): 335–352.

12. Vicat-Blanc Primet P, Gelas J-P, Mornard O, Koslovski G, Roca V, Giraud L, Montagnat J, Huu TT. A scalable
security model for enabling dynamic virtual private execution infrastructures on the internet. In IEEE Interna-
tional Conference on Cluster Computing and the Grid (CCGrid2009), Shanghai, May 2009.

13. HIPCAL project. http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html.
14. Moskowitz R, Nikander P. Host Identity Protocol (HIP) architecture. IETF request for comments. RFC 4423, May

2006.
15. Calcul Réparti sur Réseau Internet Optique à Capacité Surmultiplée (CARRIOCAS), 2007. http://www.carriocas.

org/
16. Koslovski G, Vicat-Blanc Primet P, Charão AS. VXDL: Virtual Resources and Interconnection Networks Descrip-

tion Language. In GridNets 2008, Oct. 2009.
17. Common Information Model (CIM) standards. http://www.dmtf.org/standards/cim/ [3 October 2009].
18. van der Ham J, Dijkstra F, Travostino F, Andree H, de Laat C. Using RDF to describe networks. Future Generation

Computer Systems 2006; 22: 862–867.
19. Resource Description Framework (RDF)/W3C semantic web activity. http://www.w3.org/RDF/ [3 October

2009].
20. Koslovski G, Truong Huu T, Montagnat J, Vicat-Blanc Primet P. Executing distributed applications on virtualized

infrastructures specifi ed with the VXDL language and managed by the HIPerNET framework. In First Interna-
tional Conference on Cloud Computing (CLOUDCOMP 2009), (Munich, Germany), October 2009.

21. Anhalt F, Vicat-Blanc Primet P. Analysis and experimental evaluation of data plane virtualization with Xen. In
ICNS 09: International Conference on Networking and Services, Valencia, Spain, April 2009.

22. Divakaran DM, Vicat-Blanc Primet P. Channel provisioning in grid overlay networks. In Workshop on IP QoS and
Traffi c Control, December 2007.

23. Cappello F, Caron E, Dayde M et al. Grid’5000: a large scale and highly reconfi gurable grid experimental testbed.
In GRID 05: Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing, pp. 99–106, IEEE Computer
Society, 2005; 99–106.

24. Bavier A, Feamster N, Huang M, Peterson L, Rexford J. In vini veritas: realistic and controlled network
experimentation. In SIGCOMM 06: Proceedings of the 2006 conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ACM, 2006; 3–14.

25. GENI System Overview. The GENI Project Offi ce, September 2008.
26. Feamster N, Gao L, Rexford J. How to lease the Internet in your spare time. SIGCOMM Computer Communication

Review 2007; 37(1): 61–64.
27. Bhatia S, Motiwala M, Muhlbauer W, Valancius V, Bavier A, Feamster N, Peterson L, Rexford J. Hosting virtual

networks on commodity hardware. Georgia Tech Computer Science Technical Report GT-CS-07–10, January 2008.
28. Linux VServers Project. http://linux-vserver.org [3 October 2009].
29. Bavier A, Bowman M, Chun B, Culler D, Karlin S, Muir S, Peterson L, Roscoe T, Spalink T, Wawrzoniak M.

Operating system support for planetary-scale network services. In NSDI04: Proceedings of the 1st Conference on
Networked Systems Design and Implementation, Berkeley, CA. USENIX Association, 2004; 19.

30. He J, Zhang-Shen R, Li Y, Lee C-Y, Rexford J, Chiang M. Davinci: dynamically adaptive virtual networks for a
customized internet. In CoNEXT 08: Proceedings of the 2008 ACM CoNEXT Conference, ACM, 2008.

31. Egi N, Greenhalgh A, Handley M, Hoerdt M, Huici F, Mathy L. Towards high performance virtual routers on
commodity hardware. In CoNEXT 08: Proceedings of the 2008 ACM CoNEXT conference, ACM, 2008.

148 F. ANHALT ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 19: 129–148
 DOI: 10.1002/nem

32. Santos JR, Turner Y, Janakiraman G, Pratt I. Bridging the gap between software and hardware techniques for i/o
virtualization. In ATC08: USENIX 2008 Annual Technical Conference on Annual Technical Conference, Berkeley, CA.
USENIX Association, 2008; 29–42.

33. Wang Y, Keller E, Biskeborn B, van der Merwe J, Rexford J. Virtual routers on the move: live router migration
as a network-management primitive. In SIGCOMM Comput. Commun. Rev., 2008; 38(4): 231–242.

34. Yu M, Yi Y, Rexford J. Rethinking virtual network embedding: substrate support for path splitting and migra-
tion. In SIGCOMM Comput. Commun. Rev., 2008; 38(2): 17–29.

AUTHOR’S BIOGRAPHIES

Fabienne Anhalt graduated from INSA de Lyon in 2008 with a degree in Computer Engineering and received her
Master’s degree in Computer Science. She is now a Ph.D. student at INRIA within LIP at École Normale Supérieure
de Lyon. She has interest on network virtualization, resource sharing and management, and virtual routers.

Guilherme Koslovski is a Ph.D student in Computer Science at École Normale Supérieure de Lyon (ENS, France).
He obtained his graduate and Master’s (2008) degrees in Computer Science at Federal University of Santa
Maria (UFSM, Brazil). He has interest on the following topics: specifi cation, allocation and monitoring of virtual
infrastructures.

Pascale Vicat-Blanc Primet, PhD (88) and HDR (02) in Computer Science, is Research Director at the National
Institute of Research in Computer Science (INRIA) since 2005. From 1989 to 2004, she was Associate Professor at
the École Centrale de Lyon. Since 2002, she leads the INRIA RESO team (22 researchers and engineers). She is a
member of the board of Directors of E̋cole Normale Supérieure de Lyon and co-director of its Computer Science
Laboratory (LIP). Her interests include High-Speed and High-Performance Networks, Internet protocols, Protocols
architecture, Quality of Service, network and traffi c measurement, Network programmability and virtualization,
Grid computing and Grid networking and Communications. Pr. Vicat-Blanc Primet is a member of the scientifi c
‘Networks and Telecoms’ expert committee of CNRS (National Research and Science Center—France). She has been
a member of the steering committee of Grid’5000—French Computer Science Grid initiative—, and participated to
evaluation committees of the French National Research Agency (ANR). She has co-chaired the OGF Data Transport
Research Group. She is currently the leader of the ANR HIPCAL project. She (has represented or) represents and
leads the activity of INRIA in a variety of International, European and National Grid projects including: IST
DataGRID, IST DataTAG, RNTL eToile, ACI GdX, IST EC-GIN, ANR IGTMD CARRIOCAS. She is co-chair of the
PFLDnet and ACM Gridnets conference steering committees and participates to numerous international program
committees. She has published more than 90 papers in International Journal and Conferences in Networking and
Grid computing.

