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OUTLINE

SHADOWING IN WIRELESS CELLULAR NETWORKS
when Honeycomb is as Poisson.

CONVEX COMPARISON OF NETWORK
ARCHITECTURES
and what if not Poisson?

part of the research activity developed in strong industrial
collaboration with M.K. Karray [Orange Labs]

more theoretical work from PhD thesis of D. Yogeshwaran
(currently Technion) founded by EADS.
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Cellular networks — geometry & dynamics

SINR

←Honeycomb
vs

Poisson-Voronoi→

geometry: (static) pattern of BS with their path-loss fields,
dynamics: arrivals/departures/mobility of users

Questions: SINR based QoS prediction⇒ capacity models
⇒ operator dimensioning tools.
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Geometry

Hexagonal

“ideal” model

Poisson

“ad-hoc” deployed network

“Intermediate” models?
⇒ Convex stochastic
comparisons of architectures
[PhD of D. Yogeshwaran (2009)]
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Dynamics

space-time (Poisson) arrivals of calls to the network,

demand service times at CBR (streaming), or
transmission (data) volumes at VBR,

admission and/or bit-rate allocation policies,

QoS: blocking probabilities, mean throughout and
download times, ...

Using (existing or new) queuing/blocking/PS models in
the spatial context, integrating key constraints of
lower-layers (physical/coding/MAC) of the
communication protocols.
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Shadowing & network geometry

Shadowing — signal power loss due to reflection,
diffraction, and scattering. Modeled by random field with
log-normal marginals with mean 1 and some variance.

Impacts geometry of cellular networks:
Serving BS ≡ with smallest path-loss 6≡the closets one.

Problems:
Is believed to degrade QoS (?) ⇒ Not always! For
indoor communications?
How it harms the “perfect” honeycomb? ⇒ Makes it
more Poisson-like. Poisson analysis may be useful!
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Shadowing; a stochastic resonances?
Blocking probability v/s shadowing variance
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OFDMA, downlink, hexagonal network of 36 BS, cell radius 0.5 km; log-normal shadowing,
path-loss exponent β, traffic 34.6 Erlang per km2. [BB-Karray (2011)]
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Elements of explanation

All (?) QoS metrics rely on two key user-in-network
characteristics:

path-loss from serving BS,
interference factor (1/SIR).
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Elements of explanation

All (?) QoS metrics rely on two key user-in-network
characteristics:

path-loss from serving BS,
interference factor (1/SIR).

Mean (over user locations) path-loss from serving BS
increases in shadow-variance. (No surprise.)
Indeed, for log-normal S with E[S] = 1, 1/S converges in
Pr and in L1 to∞, when V ar(S)→∞.

Mean interference factor (1/SIR) decreases for large
variance. (Surprise?)
Not really: for heavy tailed Si: maxi Si ∼

∑
i Si, hence

1/SIR ∼ ∑
i Si/ maxi Si − 1 ∼ 0.
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Shadowing makes Honeycomb like Poisson

Claim: large hexagonal network with shadowing of
sufficiently large variance is perceived at a given user
location as same “equivalent” infinite Poisson network
(without shadowing).

Evidences:
statistical testing
(Kolmogorov-Smirnov)
for selected metrics

path-loss CDF
to the serving BS⇒
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proof of a theoretical convergence of appropriate
random measures.
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Application: estimation of the path-loss

Distribution of the propagation loss L∗ to the serving BS
in infinite Poisson network:

P(L∗ ≥ t) = exp{−λπE[S2/β]t2/β/K2} ,
where λ network density, S shadowing, K, β path-loss
constant and exponent.

Statistics of L∗ easily available from mobile
measurements!

⇒ Linear-regression estimation of the propagation-loss
model parameters (For free for operator; no extra
measurement campaigns!)

E.g. in [BB-Karray (2012)] using empirical data of Orange for
Paris we estimate β = 3.85, to be compared to β = 3.80

obtained from (hybrid) COST Walfisch-Ikegami model.
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CONVEX COMPARISON OF
NETWORK ARCHITECTURES
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Motivation

Ubiquitous assumptions: deterministic lattices (usually
hexagonal) for BS and Poisson pp for mobile users.

Both the assumptions are too simplistic. Observed
patterns of BS are never perfectly periodic, due to
various locational constraints.
Active mobiles are not completely independent because
of various interactions:
– social, human interactions typically introduce more
clustering,
– MAC protocols tend to separate active users.

Our goal: Develop theoretical tools for the study of
impact of clustering of nodes on the performance of the
networks (networks in general, and wireless in
particular).
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Clustering of points

Clustering in a point pattern roughly means that the points
lie in clusters (groups) with the clusters being spaced out.

How to compare clustering properties of two point
processes (pp) having “on average” the same number of
points per unit of space?
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Comparison tools

dcx ordering of pp. Natural extension of dcx ordering of
random vectors (recall Ross’s conjecture), a
generalization of convex ordering of random variables.
Larger in dcx pp represent more variability (in probability
and in state space — clustering).
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Comparison tools

dcx ordering of pp. Natural extension of dcx ordering of
random vectors (recall Ross’s conjecture), a
generalization of convex ordering of random variables.
Larger in dcx pp represent more variability (in probability
and in state space — clustering).

Comparisons of void probabilities and all higher-order
factorial moment measures. Statistically larger voids and
moments — more clustering.

Positive and negative association of pp. Way of
comparing dependence of points to the complete
independence property of Poisson pp.

Statistical tools. Ripley function, correlation function, ...
(local hence relatively weak tools).
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Clustering & interference

Result: dcx ordering of pp implies dcx ordering of the
respective shot-noise fields [BB-Yogeshwaran (2009)].
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Clustering & interference

Result: dcx ordering of pp implies dcx ordering of the
respective shot-noise fields [BB-Yogeshwaran (2009)].

“Wireless” implications: QoS metrics which are convex in
interference I are improved(!) by the clustering of the
pattern of interferers. (Opposite to the Ross’s
conjecture!)
Examples:

coverage probability P{S/I ≥ const} for signal power
S with convex tail distribution function (Rayleigh
fading case).
Shannon throughput E[log(1 + S/I)].
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Percolation — large scale connectivity model

Boolean model C(Φ, r):
pp Φ of antennas,
spherical grains of given radius r

represent their coverage. (Interfer-
ence free model.)
Joining points which are closer
than r from each other one gets
Random Geometric Graph (RGG).

Percolation ≡ existence of an infinite connected subset
(component).
Critical radius for the percolation in the Boolean Model on Φ

rc(Φ) = inf{r > 0 : P(C(Φ, r)percolates) > 0}.
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Clustering & percolation phase-transition

Result: Let Φ be a stationary pp on R
d, weakly sub-Poisson

(void probabilities and moment measures smaller than for
the Poisson pp of some intensity λ). Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
<∞;

[BB-Yogeshwaran (2011)].
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Clustering & percolation phase-transition

Result: Let Φ be a stationary pp on R
d, weakly sub-Poisson

(void probabilities and moment measures smaller than for
the Poisson pp of some intensity λ). Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
<∞;

[BB-Yogeshwaran (2011)]. Similar results for

k-percolation (percolation of k-covered subset) for dcx

sub-Poisson.

word percolation,

SINR-graph percolation (graph on a shot-noise
germ-grain model).
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Clustering & routing

Result: Existence of stochastically too large voids in Poisson
pp is the reason of infinite end-to-end packet-delivery delays
in a time-space SINR model, studied in the framework of a
first passage percolation problem.
[Baccelli-BB-Misradeghi (2011)]

The same problem studied on some less clustering pp (that
can be shown dcx smaller than Poisson) gives finite delays.
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Further results

Monotonic in dcx models of pp based on perturbed
lattices. Intended to serve as a platform for further
theoretical and numerical studies of clustering.

Comparison of voids and moments of determinantal and
permanental pp, as well as all positively and negatively
associated pp to these of Poission pp.

Counterexample of highly clustering and very well
percolating pp.

– p. 20



FUTURE PLANS

Clustering in random graphs (leveraging expertise of the
team in the “discrete garden”)
A prototypal result: convex ordering of the offspring
degree in the Galton-Watson tree implies caparison of
the extinction probabilities [from an ongoing PhD].

QoS of streaming in LTE cellular networks [another
ongoing PhD co-advised with Orange Labs].

Network calculus for wireless network models; worst
case analysis taking into account spatial constraints of
the traffic (leveraging expertise of the team in the NC).

Perfect simulations for wireless networks.
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