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Networks with discrete dynamics

Dynamics

I Discrete (time or events).

I Markovian.

Results

I Stability.

I Performance evaluation/bounds.

I Control.

Models

I Queueing networks.

I Probabilistic cellular automata.

Main techniques

I Simulation (perfect sampling).

I Markov reward/decision processes.

I Stochastic orders.

I Percolation.
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Zoom: Envelope perfect sampling
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Challenges:

I Envelope computation.

I Coupling time.

I State space (without lattice structure, infinite case).



Almost Space Homogeneous Events

B., Gaujal, Pin. Performance Evaluation 2012.

X = [0,C ], where C = (C1, . . . ,Cd) ∈ Zd and x ≤ y ⇔ xi ≤ yi , ∀i ;
[m,M] = [m1,M1]× · · · × [md ,Md ].

An event a is an almost space homogeneous event (ASHE) if there exists
a vector v ∈ Zn (direction vector) and a binary relation R (blocking
relation) on {1, . . . , d} s.t. for all x in X :

Let B(x)
def
= {i : xi + vi 6∈ [0,Ci ] and ∃j ∈ CR(x), (j , i) ∈ R} the set of

blocked components in x .

For all i :

(x · a)i =

{
xi , i ∈ B(x),

[(xi + vi ) ∧ Ci ]
+, i 6∈ B(x).

Complexity of envelope computation: O(|R|) = O(d2).



Skipping of events
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Beyond envelopes

When the coupling time for envelopes is too long
(or if they do not couple):

I bounds

I splitting
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Zoom: Cellular automata

Cell space: any finite or countable group (G ,+).
Alphabet: a finite set A.

Definition by S. Ulam and J. von Neumann (50’s)
A cellular automaton is a function F : AG → AG characterized by

I a finite neighborhood V ⊂ G ,

I a local function f : AV → A such that F (x)k = f ((xk+v )v∈V ).

Applications

I math. model for distributed computing.

I very simple description generating
complex behaviors, models for physical
and biological processes.

I CA ⇔ continuous functions commuting
with the shift (Hedlund, 1969)

t

G = (Z, +),A = {0, 1},
V = (0, 1),

F (x)n = xn + xn+1 mod 2.



Probabilistic CA

M(A) the set of probability measures on A.

A PCA is given by

I a finite neighbourhood V ⊂ G ,

I a local function ϕ : AV →M(A).

The cells are updated synchronously and independently, according to ϕ
(depending on a finite neighbourhood).

This defines an application F :M(AG )→M(AG ), µ 7→ µF .
(M(AG ) prob. measures on AG )

Def. A PCA is ergodic if it has a unique invariant measure π, and if for
each measure µ ∈M(AZ), the sequence µF n converges weakly to π
(i.e. µF n(C ) conv. to π(C ) for any finite cylinder C ).

The ergodicity of PCA is undecidable Toom et al., 1990.



Ergodicity of PCA on Z

Set of cells: Z. Even the ergodicity of DCA is undecidable.
B., Mairesse, Marcovici, STACS 2011.

Sufficient conditions: using coupling from the past.

New alphabet B = {0, 1, ?} (unknown letters replaced by “?”).
g : BV →M(B), defined for each y ∈ BV by

g(y)(0) = min
x∈AV , x∈y

f (x)(0), g(y)(1) = min
x∈AV , x∈y

f (x)(1),

g(y)(?) = 1− min
x∈AV , x∈y

f (x)(0)− min
x∈AV ,x∈y

f (x)(1).

Theorem. There exists a critical value 0 < α∗ < 1, depending only on
|V |, such that F is ergodic if

g(?V )(?) < α∗.



Density classification

A = {0, 1}, p ∈ [0, 1]. Initial distrib. µp on AZ: i.i.d., 1 with prob. p.

Question: Find a CA (or PCA) such thatp < 1/2 =⇒ µpF
n w−−−→

n→∞
δ0G

p > 1/2 =⇒ µpF
n w−−−→

n→∞
δ1G

.

Results:

Z2: Toom’s rule

Z: conjectured candidates
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T3 = 〈a, b, c | a2 = b2 = c2 = 1〉,

F (x)g = maj(xgab, xgac , xgacbc ).

B., Fatès, Mairesse, Marcovici, LATIN 2012



Other results

Bounding techniques for Markov chains

Problem: combinatorial explosion of state space

Objective: to find another chain that provides bounds for the original
chain and that is simpler to analyze.

Main result: B., Vliegen, Scheller-Wolf, Math. Oper. Res. 2012.

I Upper/lower bounds for steady-state reward functions by redirecting
transitions to more/less attractive sets of states.

I Simplifying the model using aggregation of states.

I Application: ATO systems.

Bipartite matching

I Dynamic (queueing) variant.

I Stability (of a max-weight type policy; global)



Projects and collaborations

ANR MAGNUM (2010-14): random generation of complex combinatorial
structures and simulation of random dynamical discrete systems.
Partners: UPMC, Paris Diderot, University Paris Nord.

ARC OCOQS (2011-12): Optimal threshold policies in COntrolled
Queuing Systems.
With: Hyon (University of Paris Ouest Nanterre), Jean-Marie (INRIA,
MAESTRO), Vliegen (University of Twente).

Perfect sampling: Gaujal (INRIA, MESCAL)

Markov chains: Fourneau (UVSQ), Scheller-Wolf (Carnegie Mellon).

Bipartite matching: Gupta (Google), Mairesse (CNRS)

PCA: Mairesse (CNRS), Fatès (INRIA, MAIA).
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