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e Mathematical tools:
— Cavity method

— Configuration model

e Applications:

— Pure Mathematics:

* Random matrices (SODA, RSA, AoP)
* Combinatorial optimization (AIHP, SIAMJComp, PTRF)

* First passage percolation

— Communication Networks:
* Load balancing (SODA, SIGMETRICS)

— Network economics:
* Diffusions in social networks (GEB)
* Control of epidemics (SIGMETRICS)
* Mean field games for security (INFOCOM(3), SIGMETRICS)



DISCRETE GEOMETRY: RANDOM GRAPHS

e Mathematical tools:
— Cavity method

— Configuration model

e Applications:

— Pure Mathematics:
* Random matrices C. Bordenave, J. Salez
* Combinatorial optimization D. Aldous, C. Bordenave, J. Salez
* First passage percolation M. Draief, H. Amini

— Communication Networks:

* Load balancing M. Leconte, L. Massoulié

— Network economics:
* Diffusions in social networks E. Coupechoux
* Control of epidemics

* Mean field games for security J. Bolot



WEIGHTED DIAMETER

Graph G = (V, E):

Distance dist(a, b) = min cry(qp) ||, the number of edges in F'in the shortest

path connecting a and b.

Diameter of G defined by:

diam(G) = max{dist(a, b), a,b € V, dist(a, b) < oco}.

Weight associated to each edge e € E: w,.

Weighted distance dist,,(a,b) = min cri(qp) D eer We-

ecT

Weighted diameter of G defined by:

diam,, (G) = max{dist,,(a,b), a,b € V, dist,(a,b) < oo} .
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BRANCHING PROCESS APPROXIMATION

The first individual has offspring distribution {px }.
The other individuals have offspring distribution {qy. }.

Let {qx } 2 the size-biased probability mass function corresponding to {py }, by

(k + 1)pr+1
A

, and, v = Zk% € (0, 00).
k=0

4k =

The mean of the size of generation k is \v" 1.

The condition v > 1 is equivalent to the existence of a giant component.



TYPICAL GRAPH DISTANCE

Theorem 1. For a and b chosen uniformly at random in the giant component of

G(n, (d;)}), we have
dist(a,b) p 1

\

logn  logv’

Van der Hofstad, Hooghiemstra, Van Mieghem 2005



A SIMPLE HEURISTIC

Let Z,il) be the number of free half-edges in the ball B(a, k) = {7, dist(1,7) < k}.
Zél) is the degree of node 1.
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A SIMPLE HEURISTIC

Let Z,il) be the number of free half-edges in the ball B(a, k) = {7, dist(1,7) < k}.
Zél) is the degree of node 1.

O~

By the branching process approximation, Zlil) is close to A\vF~ L,

A free half-edge of Z ,gl) is attached to a free half-edge of Z 122) with positive probability if

Z(l)Z(Q) is of order the total number of free half-edges left after k exploration steps.

Take k ~ %igg’; then Z< ) Z(Q) A~ +/n and the number of free half-edges is

The typical distance between 1 and 2 is ~ 2k = }giz




WEIGHTED DIAMETER

Theorem 2. Consider a random graph G(n, (d;)}) with i.i.d. exponential 1 weights on
its edges, then

diamy, (G(n, (d;)7)) p 1 2 1(dinm2)

> 1. Lig . —1).
log 1 S 4 (@min=3) T 0 T 3, (dmin=1)

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs)
Amini, Draief, L. 2011

Key ideas:
e Coupling with a continuous time branching process

e Large deviations for split times



WEIGHTED DIAMETER

Theorem 3. Consider a random graph G(n, (d;)}) with i.i.d. exponential 1 weights on
its edges, then

diamy, (G(n, (d;)7)) p 1 2 1(dinm2)

> 1ig.. g . —1)-
logn v—1 i Amin (din23) T 1 —q1 i 1 — By (dmin=1)

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs)
Amini, Draief, L. 2011

Key ideas:
e Coupling with a continuous time branching process

e Large deviations for split times

1
lim
n—oo logn

1
log P (oo > Tk > ( —- )logn) = —x9(&nin, k)




Game-theoretic contagion model

Situation Payoff (for both users)
S8 .
1—g>gq
0

Game on a network of interconnected players Blume 1995, Morris 2000

e Total payoff = sum of payoffs from all your neighbors

3

|Neighbors using Skype|
|Neighbors|

e Switch from >



Contagion in networks

Parameter g varies:

qg small = | CASCADE

q higher = NO cascade

Contagion threshold qéG) i= sup { q | CASCADE in (G for parameter q}



Contagion in random networks: impact of connectivity
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Contagion in random networks with clustering
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joint work with E. Coupechoux



Contagion in random networks with clustering

Graphs with the SAME asymptotic degree distribution: pz. o e k/50
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— Graph with clustering

— Graph with no clustering

joint work with E. Coupechoux



FUTURE

e Mathematical tools:
— Cavity method

— Configuration model

e Applications:

— Pure Mathematics:
* Random matrices

} — Statistical Inference
* Combinatorial optimization

* First passage percolation — stochastic order, Bartek

— Communication Networks:

* Load balancing

* Queueing, Loss Networks — Ana
— Network economics:

* Diffusions in social networks
* Control of epidemics

* Mean field games for security



