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Networks with discrete dynamics

Dynamics Models
> Discrete (time or events). » Queueing networks.

» Markovian. » Probabilistic cellular automata.

Results
> Stability.

Main techniques

» Simulation (perfect sampling).
> Performance evaluation/bounds.

» Control.

» Markov reward/decision processes.
» Stochastic orders.

» Percolation.
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Zoom: Envelope perfect sampling
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Challenges:
» Envelope computation.
» Coupling time.

> State space (without lattice structure, infinite case).



Almost Space Homogeneous Events

B., Gaujal, Pin. Performance Evaluation 2012.

X =10, C], where C = (Cy,...,Cy)€Z9 and x <y < x; <y, Vi
[m, M] = [my, My] x -+ X [mg, My4].
An event a is an almost space homogeneous event (ASHE) if there exists

a vector v € Z" (direction vector) and a binary relation R (blocking
relation) on {1,...,d} s.t. for all x in X:

Let B(x) < {i : x;+v; €[0,C] and 3j € CR(x), (j,i) € R} the set of
blocked components in x.

(x-a); = {x,-, i € B(x),
' [(X,' + V,') A C,‘]+7 i € B(X)

For all 7 :

Complexity of envelope computation: O(|R|) = O(d?).



Skipping of events

Time

Pin, B., Gaujal. Valuetools 2011.
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Beyond envelopes

When the coupling time for envelopes is too long
(or if they do not couple):

» bounds

> splitting

upper envelope

lower envelope

—n splitting 0



Zoom: Cellular automata

Cell space: any finite or countable group (G, +).

Alphabet: a finite set A.

Definition by S. Ulam and J. von Neumann (50's)

A cellular automaton is a function F : A® — A characterized by
> a finite neighborhood V C G,
» a local function f : AV — A such that F(x)x = f((xXksv)vev)-

Applications
» math. model for distributed computing.

» very simple description generating
complex behaviors, models for physical

and biological processes. t
» CA & continuous functions commuting G=(Z,+),A={0,1},
with the shift (Hedlund, 1969) v =(0,1),

F(x)n = Xn + Xnp1 mod 2.



Probabilistic CA

M(A) the set of probability measures on A.
A PCA is given by

> a finite neighbourhood V C G,

> a local function ¢ : AV — M(A).

The cells are updated synchronously and independently, according to ¢
(depending on a finite neighbourhood).

This defines an application F : M(A®) — M(A®), u+ pF.
(M(A®) prob. measures on A®)

Def. A PCA is ergodic if it has a unique invariant measure 7, and if for
each measure p € M(A%), the sequence ;iF" converges weakly to 7
(i.e. uF™(C) conv. to 7(C) for any finite cylinder C).

The ergodicity of PCA is undecidable Toom et al., 1990.



Ergodicity of PCA on Z

Set of cells: Z. Even the ergodicity of DCA is undecidable.
B., Mairesse, Marcovici, STACS 2011.

Sufficient conditions: using coupling from the past.

New alphabet B = {0,1,?} (unknown letters replaced by "“?7").
g : BY — M(B), defined for each y € BY by

g)(0) = min £(x)(0), g(y)(1)= _min £(x)(1),

x€AV, xey x€AV, xey
Y=1— min f 0)— min f 1).
M) =1 _min_ F((0)~ _min_ F()(1)

Theorem. There exists a critical value 0 < o < 1, depending only on
|V, such that F is ergodic if

g(?V)(?) < .



Density classification
A={0,1}, p € [0,1]. Initial distrib. 1, on A%: i.i.d., 1 with prob. p.
Question: Find a CA (or PCA) such that
p<1/2 = ppF" —"— 5ye
n—oo
p>1/2 = ppyF" —"— 456
n—oo
Results:

72: Toom's rule

. . _ 2 __ 42 2 __
7Z: conjectured candidates Ts=(abc|a =b"=c"=1),

F(X)g = maj(xgab» Xgac s Xgacbc)-

B., Fatés, Mairesse, Marcovici, LATIN 2012



Other results

Bounding techniques for Markov chains
Problem: combinatorial explosion of state space

Objective: to find another chain that provides bounds for the original
chain and that is simpler to analyze.

Main result: B., Vliegen, Scheller-Wolf, Math. Oper. Res. 2012.

» Upper/lower bounds for steady-state reward functions by redirecting
transitions to more/less attractive sets of states.

» Simplifying the model using aggregation of states.
> Application: ATO systems.

Bipartite matching

» Dynamic (queueing) variant.

> Stability (of a max-weight type policy; global)



Projects and collaborations

ANR MAGNUM (2010-14): random generation of complex combinatorial
structures and simulation of random dynamical discrete systems.
Partners: UPMC, Paris Diderot, University Paris Nord.

ARC OCOQS (2011-12): Optimal threshold policies in COntrolled
Queuing Systems.

With: Hyon (University of Paris Ouest Nanterre), Jean-Marie (INRIA,
MAESTRO), Vliegen (University of Twente).

Perfect sampling: Gaujal (INRIA, MESCAL)

Markov chains: Fourneau (UVSQ), Scheller-Wolf (Carnegie Mellon).
Bipartite matching: Gupta (Google), Mairesse (CNRS)

PCA: Mairesse (CNRS), Fatés (INRIA, MAIA).
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