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DISCRETE GEOMETRY: RANDOM GRAPHS

• Mathematical tools:

– Cavity method

– Configuration model

• Applications:

– Pure Mathematics:

∗ Random matrices (SODA, RSA, AoP)

∗ Combinatorial optimization (AIHP, SIAMJComp, PTRF)

∗ First passage percolation

– Communication Networks:

∗ Load balancing (SODA, SIGMETRICS)

– Network economics:

∗ Diffusions in social networks (GEB)

∗ Control of epidemics (SIGMETRICS)

∗ Mean field games for security (INFOCOM(3), SIGMETRICS)
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DISCRETE GEOMETRY: RANDOM GRAPHS

• Mathematical tools:

– Cavity method

– Configuration model

• Applications:

– Pure Mathematics:

∗ Random matrices C. Bordenave, J. Salez

∗ Combinatorial optimization D. Aldous, C. Bordenave, J. Salez

∗ First passage percolation M. Draief, H. Amini

– Communication Networks:

∗ Load balancing M. Leconte, L. Massoulié

– Network economics:

∗ Diffusions in social networks E. Coupechoux

∗ Control of epidemics

∗ Mean field games for security J. Bolot



WEIGHTED DIAMETER

Graph G = (V,E):

- Distance dist(a, b) = minπ∈Π(a,b) |π|, the number of edges in E in the shortest

path connecting a and b.

- Diameter of G defined by:

diam(G) = max{dist(a, b), a, b ∈ V, dist(a, b) < ∞}.

- Weight associated to each edge e ∈ E: we.

- Weighted distance distw(a, b) = minπ∈Π(a,b)

∑

e∈π we.

- Weighted diameter of G defined by:

diamw(G) = max{distw(a, b), a, b ∈ V, distw(a, b) < ∞} .



EXPLORATION PROCESS
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BRANCHING PROCESS APPROXIMATION

The first individual has offspring distribution {pk}.

The other individuals have offspring distribution {qk}.

Let {qk}∞k=0 the size-biased probability mass function corresponding to {pk}, by

qk =
(k + 1)pk+1

λ
, and, ν =

∞
∑

k=0

kqk ∈ (0,∞).

The mean of the size of generation k is λνk−1.

The condition ν > 1 is equivalent to the existence of a giant component.



TYPICAL GRAPH DISTANCE

Theorem 1. For a and b chosen uniformly at random in the giant component of

G(n, (di)
n
1 ), we have

dist(a, b)

log n

p→ 1

log ν
.

Van der Hofstad, Hooghiemstra, Van Mieghem 2005



A SIMPLE HEURISTIC

Let Z
(1)
k be the number of free half-edges in the ball B(a, k) = {i, dist(1, i) ≤ k}.

Z
(1)
0 is the degree of node 1.

By the branching process approximation, Z
(1)
k is close to λνk−1.

A free half-edge of Z
(1)
k is attached to a free half-edge of Z

(2)
k with positive probability if

Z
(1)
k Z

(2)
k is of order the total number of free half-edges left after k exploration steps.

Take k ≈ 1 log n
2 log ν , then Z

(1)
k ≈ Z

(2)
k ≈ √

n and the number of free half-edges is

≈ n− 2
√
n ≈ n.

The typical distance between 1 and 2 is ≈ 2k = logn
log ν .
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WEIGHTED DIAMETER

Theorem 2. Consider a random graph G(n, (di)
n
1 ) with i.i.d. exponential 1 weights on

its edges, then

diamw(G(n, (di)
n
1 ))

log n

p→ 1

ν − 1
+

2

dmin
1(dmin≥3) +

1(dmin=2)

1− q1
+

2

1− β∗
1(dmin=1).

Ding, Han Kim, Lubetzky, Peres 2010 (random regular graphs)

Amini, Draief, L. 2011

Key ideas:

• Coupling with a continuous time branching process

• Large deviations for split times

lim
n→∞

1

log n
log P

(

∞ > T k
n ≥

(

x+
1

ν − 1

)

log n

)

= −xg(ξmin, k)

P

(

T k
n <

(

1− x

ν − 1

)

log n

)

= o
(

nCe−nx
)

.
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Theorem 3. Consider a random graph G(n, (di)
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.



Game-theoretic contagion model

Situation Payoff (for both users)

q

1− q > q

0

Game on a network of interconnected players Blume 1995, Morris 2000

• Total payoff = sum of payoffs from all your neighbors

• Switch from to ⇔ |Neighbors using Skype|
|Neighbors| > q.



Contagion in networks

Parameter q varies:

q small ⇒ CASCADE

q higher ⇒ NO cascade

Contagion threshold q
(G)
c := sup

{

q
∣

∣CASCADE in G for parameter q
}



Contagion in random networks: impact of connectivity

· · · Pivotal players in the random graph

— Cascade size in the random graph



Contagion in random networks with clustering

joint work with E. Coupechoux



Contagion in random networks with clustering

Graphs with the SAME asymptotic degree distribution: p̃k ∝ k−τe−k/50

— Graph with clustering

— Graph with no clustering

joint work with E. Coupechoux



FUTURE

• Mathematical tools:

– Cavity method

– Configuration model

• Applications:

– Pure Mathematics:
∗ Random matrices

∗ Combinatorial optimization

}

→ Statistical Inference

∗ First passage percolation → stochastic order, Bartek

– Communication Networks:

∗ Load balancing

∗ Queueing, Loss Networks → Ana

– Network economics:

∗ Diffusions in social networks

∗ Control of epidemics

∗ Mean field games for security


