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s SHADOWING IN WIRELESS CELLULAR NETWORKS
when Honeycomb is as Poisson.

part of the research activity developed in strong industrial
collaboration with M.K. Karray [Orange Labs]

» CONVEX COMPARISON OF NETWORK
ARCHITECTURES
and what if not Poisson?

more theoretical work from PhD thesis of D. Yogeshwaran
(currently Technion) founded by EADS.




SHADOWING IN WIRELESS
CELLULAR NETWORKS
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geometry: (static) pattern of BS with their path-loss fields,

dynamics: arrivals/departures/mobility of users

Questions: SINR based QoS prediction = capacity models

= operator dimensioning tools.
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» space-time (Poisson) arrivals of calls to the network,

s demand service times at CBR (streaming), or
transmission (data) volumes at VBR,

» admission and/or bit-rate allocation policies,

» Qo0S: blocking probabilities, mean throughout and
download times, ...

» Using (existing or new) gueuing/blocking/PS models In
the spatial context, integrating key constraints of
lower-layers (physical/coding/MAC) of the
communication protocols.




» Shadowing — signal power loss due to reflection,
diffraction, and scattering. Modeled by random field with
log-normal marginals with mean 1 and some variance.

s Impacts geometry of cellular networks:
Serving BS = with smallest path-loss #the closets one.
» Problems:

s Is believed to degrade QoS (?) = Not always! For
Indoor communications?

s How it harms the “perfect” honeycomb? = Makes it
more Poisson-like. Poisson analysis may be useful!




Blocking probabillity v/s shadowing variance
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Logarithmic standard deviation of the shadowing

OFDMA, downlink, hexagonal network of 36 BS, cell radius 0.5 km; log-normal shadowing,
path-loss exponent 3, traffic 34.6 Erlang per km2. [BB-Karray (2011)]
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characteristics:

s path-loss from serving BS,
s Interference factor (1/SIR).

» Mean (over user locations) path-loss from serving BS
Increases in shadow-variance. (No surprise.)
Indeed, for log-normal S with E[S] = 1, 1/S converges in
Prand in L1 to oo, when Var(S) — oo.

» Mean interference factor (1/SIR) decreases for large
variance. (Surprise?)
Not really: for heavy tailed S;: max; S; ~ > . S;, hence
1/SIR ~ Zz S;/ max; S; —1 ~ 0.




s Claim: large hexagonal network with shadowing of
sufficiently large variance is perceived at a given user
location as same “equivalent” infinite Poisson network
(without shadowing).

» Evidences:
» Statistical testing
(Kolmogorov-Smirnov)
for selected metrics

path-loss CDF
to the serving BS=

120 140
Propagation loss [dB]

s proof of a theoretical convergence of appropriate
random measures.




» Distribution of the propagation loss L* to the serving BS
In infinite Poisson network:
P(L* > t) = exp{—AwE[S?/8]t2/B /| K?}
where X\ network density, S shadowing, K, 3 path-loss
constant and exponent.

» Statistics of L* easily available from mobile
measurements!

» = Linear-regression estimation of the propagation-loss
model parameters (For free for operator; no extra
measurement campaigns!)

E.g. in [BB-Karray (2012)] using empirical data of Orange for
Paris we estimate 3 = 3.85, to be compared to 3 = 3.80
obtained from (hybrid) COST Walfisch-lkegami model.




CONVEX COMPARISON OF
NETWORK ARCHITECTURES




s Ubiquitous assumptions: deterministic lattices (usually
hexagonal) for BS and Poisson pp for mobile users.

» Both the assumptions are too simplistic. Observed
patterns of BS are never perfectly periodic, due to
various locational constraints.

Active mobiles are not completely independent because
of various interactions:

— social, human interactions typically introduce more
clustering,

— MAC protocols tend to separate active users.

» Our goal: Develop theoretical tools for the study of
Impact of clustering of nodes on the performance of the
networks (networks in general, and wireless Iin

particular).
e




Clustering in a point pattern roughly means that the points
lie in clusters (groups) with the clusters being spaced out.
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How to compare clustering properties of two point
orocesses (pp) having “on average” the same number of
points per unit of space?
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random vectors (recall Ross’s conjecture), a
generalization of convex ordering of random variables.
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Comparison tools

» dcx ordering of pp. Natural extension of dex ordering of
random vectors (recall Ross’s conjecture), a
generalization of convex ordering of random variables.
Larger in dex pp represent more variability (in probability
and In state space — clustering).

» Comparisons of void probabilities and all higher-order
factorial moment measures. Statistically larger voids and
moments — more clustering.

» Positive and negative association of pp. Way of
comparing dependence of points to the complete
Independence property of Poisson pp.

» Statistical tools. Ripley function, correlation function, ...
(local hence relatively weak tools).

-p.15




» Result: dex ordering of pp implies dcx ordering of the
respective shot-noise fields [BB-Yogeshwaran (2009)].




» Result: dex ordering of pp implies dcx ordering of the
respective shot-noise fields [BB-Yogeshwaran (2009)].

s “Wireless” implications: QoS metrics which are convex in
Interference I are improved(!) by the clustering of the
pattern of interferers. (Opposite to the Ross’s
conjecture!)

Examples:

s coverage probability P{S/I > const} for signal power
S with convex tail distribution function (Rayleigh
fading case).

» Shannon throughput E[log(1 + S/I)].




Boolean model C(®, r): ‘

pp ® of antennas,

spherical grains of given radius r
represent their coverage. (Interfer-
ence free model.)

Joining points which are closer
than » from each other one gets
Random Geometric Graph (RGG).

Percolation = existence of an infinite connected subset
(component).

Critical radius for the percolation in the Boolean Model on &
re(®) = inf{r > 0: P(C (P, r)percolates) > 0}.




Result: Let ® be a stationary pp on R¢, weakly sub-Poisson
(void probabilities and moment measures smaller than for
the Poisson pp of some intensity ). Then

Vd(log(3? — 2))*/
\1/d

'rc((I)) < < O0;

0 <
< (2d)\(3d _ 1))1/d —

[BB-Yogeshwaran (2011)].




Result: Let ® be a stationary pp on R¢, weakly sub-Poisson
(void probabilities and moment measures smaller than for
the Poisson pp of some intensity ). Then

Vd(log(3? — 2))*/
\1/d

rc((I)) < < 005

0 <
< (2d)\(3d _ 1))1/d —

[BB-Yogeshwaran (2011)]. Similar results for

» k-percolation (percolation of k-covered subset) for dex
sub-Poisson.

» word percolation,

» SINR-graph percolation (graph on a shot-noise
germ-grain model).



Result: Existence of stochastically too large voids in Poisson
pp is the reason of infinite end-to-end packet-delivery delays
In a time-space SINR model, studied in the framework of a
first passage percolation problem.

[Baccelli-BB-Misradeghi (2011)]

The same problem studied on some less clustering pp (that
can be shown dcx smaller than Poisson) gives finite delays.




» Monotonic in dex models of pp based on perturbed
lattices. Intended to serve as a platform for further
theoretical and numerical studies of clustering.

s Comparison of voids and moments of determinantal and
permanental pp, as well as all positively and negatively
associated pp to these of Poission pp.

» Counterexample of highly clustering and very well
percolating pp.




» Clustering in random graphs (leveraging expertise of the
team In the “discrete garden”)
A prototypal result: convex ordering of the offspring
degree in the Galton-Watson tree implies caparison of
the extinction probabilities [from an ongoing PhD].

» QoS of streaming in LTE cellular networks [another
ongoing PhD co-advised with Orange Labs].

» Network calculus for wireless network models; worst
case analysis taking into account spatial constraints of
the traffic (leveraging expertise of the team in the NC).

o Perfect simulations for wireless networks.
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